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Navigation is a term with broad usage in everyday life, purporting the act of moving,
finding one’s way in an unknown environment, ascertaining a craft’s position or even browsing2

the pages of the internet. Originally the term meant the skill of sailing a ship, in particular
steering and maneuvering, and is derived from the Latin words navis and agere, translated to4

“ship” and “to drive”. The modern field of study of navigation in a scientific context usually
relates to the ascertainment or determination of position, velocity and orientation of some object6

relative to a reference point, and is used for all type of crafts and vehicles, such as aircraft, ship,
submarines and cars.8

Before the advent of motion sensors, rotation sensors, computers and electronic navigational
aids, navigation at sea was carried out with sextant and, at the time, accurate clocks to manually10

obtain, measure and calculate the position on Earth. Also, by crudely estimating the ship’s speed
and heading, the current position could be calculate based on a previously known one, a process12

referred to as dead reckoning. In the present day, inertial navigation systems (INS) provide the
user with position, velocity and attitude (PVA) information with high resolution independent of14

the vehicle platform. Strapdown INS is a type of INS based on accelerometer and angular rate
measurements from sensors mounted directly to the craft’s hull or fuselage, while the rotational16

and translational motion of the craft, relative to the Earth, is obtained through software by
mechanization of the strapdown equations in a dead reckoning fashion. Commercially available18

navigational aids based on global navigation satellite systems (GNSS), in particular the Global
Positioning System (GPS), paved the way for wide spread INS utilization based on low-cost20

inertial sensors, which are in need of frequent position corrections and aiding. For the interested
reader, an overview of GNSS and its history is found in “History of Global Navigation Satellite22

Systems”. INS corrections are usually performed using an estimator, where the extended Kalman
filter (EKF) traditionally has been the applied estimator, which has been covered in the literature24
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for five decades, such as in [1]–[5].

As a consequence of increased use of inertial sensor technology, due to price and size2

reduction combined with increased sensor quality in the last three decades, nonlinear observers
(NLOs) for PVA estimation based on inertial sensors with aiding from position and/or velocity4

measurement systems have been developed. Such results focus on the deterministic estimator’s
stability properties, usually designed by employing Lyapunov-based stability theory. This is in6

contrast to stochastic estimators such as the EKF, the multiplicative extended Kalman filter
(MEKF), [6], and the unscented Kalman filter (UKF), [7], which is based on approximate8

minimum variance filtering. Another estimator utilized to solve the navigation problem, also
being very different to those based on stability theory, is the particle filter (PF), [8], where a set10

of chosen particles are used to approximate the posterior distribution of some random pro,cess,
in this case the navigation system where the sensor measurements are corrupted with noise.12

The results of [9]–[17] are examples of NLOs covering various aspects of navigation. Part
of the motivation for research on NLOs is to provide a navigation solution using algorithms14

that are alternative to the industry standard solutions based on EKF [2]–[5], MEKF, [6], and
other Bayesian estimators, in order to be able to theoretically guarantee robustness. Regarding16

navigation systems for autonomous platforms and new consumer-grade applications, another
objective that arises is the reduction of the computational load of the navigation solution. Such18

reduction might enable the use of small-size and lightweight computational units with reduced
arithmetic resolution compared to industry standard navigation computers. The reduction of the20

navigation computer is beneficial in that more space, weight, energy and power is available
for any payload the user wishes the autonomous platform to be equipped with. Compared to22

stochastic methods, in particular the PF, due to the number of particle needed to correctly
approximate the posterior distribution, NLOs has the advantage of having less computational24

burden.

In the works of [9]–[17], except from [13], fixed observer feedback gains are sufficient26

to achieve certain stability properties, which guarantee a high degree of robustness. A relevant
question, also when comparing NLOs to estimators such as the MEKF and minimum energy28

filters [18], whose global stability properties are difficult to guarantee, is whether a fixed gain
strategy incurs a loss of estimation accuracy in steady-state or transient conditions. If so, an other30

question needs to be resolved; that is how nonlinear or time-varying gains can be synthesized to
achieve significantly better performance of NLOs compared to applying a fixed-gain approach.32

Since NLOs are commonly designed using nonlinear stability theory in continuous
time, another challenge is how to best discretize the observer dynamics and how to manage34
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measurements that may have different sampling rates, may be asynchronous, or delayed. For the
complementary filter [11], applied to attitude estimation, some answers are given in [19]. For2

the update of position and velocity estimates, the best practice appears to be use of a corrector–
predictor algorithm [20, Ch. 11.3.4], similar to the propagation update steps in a Kalman filter4

(KF), [21, Ch. 4.2]. Similar ideas can be used to deal with delayed measurements, when the
delay is known, [22]–[24]. Still, a systematic study on discrete-time implementation has not been6

made in the context of NLOs.

The relatively mature literature on EKF for integrated inertial navigation, [2]–[5], has8

a strong focus on the modeling and estimation of systematic errors such as ionospheric and
tropospheric influences on satellite navigation accuracy, and bias and drift characteristics of10

inertial sensors. In contrast, NLOs typically make no explicit assumptions on the characteristics
of such errors, except including “constant parameter” augmentations to estimate the gyro biases,12

[9]–[17]. It is however clear that the underlying deterministic modeling framework, which the
design of NLOs is based upon, could allow some frequency-dependent characterization of sensor14

errors to be included. By doing so, the INS/GNSS accuracy is potentially increased. In the
situation of non-ideal GNSS conditions, some work has been done in [25], applying NLOs16

to detect GNSS drift which could be caused by receiver clock error, multipath or erroneous
differential correction. However, the main focus of this article is on normal GNSS conditions18

and how NLOs can be designed to obtain accurate position, velocity and attitude estimates.

Application Example20

With new emerging technologies, the commercial market for unmanned aerial vehicles
(UAV) is growing rapidly. These types of aircraft perform a multitude of task, including22

surveillance, scientific measurements, environmental monitoring and wildlife mapping, and
inherently require an accurate, precise, lightweight and small-size navigation solution. A24

photograph of a Penguin B fixed-wing UAV is shown in Fig. 1, and its technical specifications
are included in Table 1.26

In flight, high resolution PVA and temporal information must be provided by the navigation
system for the UAV and its operator to safely and accurately control the vehicle and georeference28

the payload sensor data in order to fulfill the mission objective. At an altitude of 200 m, a 1◦ error
in roll corresponds to approximately 3.5 m georeferencing error on the ground, and a 100 ms30

timing error results in a 3 m error at a speed of 30 m/s. Also, position information obtained
from a typical commercial grade GNSS receiver only provide position data at 1–5 Hz, while32

the dynamics of the craft are much faster than that. Hence, even though GNSS solutions are
improving, there are still issues, prompting the employment of integrated GNSS/INS to conduct34
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UAV missions. Moreover, attitude information is also not available using only one GNSS antenna,
meaning that this has to be estimated using integrated GNSS/INS. Fig. 2 presents the flight path2

of a UAV test flight, conducted from Eggemoen, Norway.

In the setup used for validation in this article, the UAV is equipped with an ADIS 164884

inertial measurement unit (IMU) measuring specific force, rotation rate and magnetic field of the
vehicle at 410 Hz. For more on IMUs, see section “Inertial and Magnetic Measurements” and6

“Inertial Measurement Units” Additionally a u-Blox LEA-6T GNSS receiver supplies computed
position as well as pseudoranges at 5 Hz. The sensors are synchronized using a microcontroller8

in order to accurately timestamp the measurements. Engine induced vibrations are significant
and can typically be seen as a signal of magnitude close to 1 m/s2 at 70 Hz on the accelerometer10

measurements.

Main Contribution12

This article considers the NLOs of [16] and [26], which are based on complementary
filtering for attitude estimation, [11], in combination with a linear approach to design a14

translational motion observer (TMO), [27], which in turn is used to estimate the position,
linear velocity and specific force. For a conceptual overview, “Complementary Filtering” can be16

advised. In applied usage, NLOs are immature, in particular related to implementation aspects and
handling imperfect measurements with different errors, resolution and sample rates. In addition18

to present implementation related aspects of the NLO, further re-design is addressed to answer
the research questions presented above. The basis for this work include linear methods for exact20

discretization of the translational motion part of the observer, error model augmentation, and
the methods in [19], [20] for discretization, tuning and multi-rate implementation of the attitude22

observer. Based on this, the main contributions of this articles are:

• A linear time-varying (LTV) representation of the observer error dynamics is exploited to24

formulate a time-varying Riccati equation to select time-varying gains in the update of
velocity and position estimates (as well as some auxiliary variable estimates).26

• Strategies originally developed for the Kalman filter are exploited in handling sequential
single-measurement updates to accommodate multi-rate and asynchronous measurements28

in estimation of position, velocity and attitude based both direct and indirect observer
implementations.30

• Inclusion of GNSS error models in order to take into account the dynamic noise character-
istic of GNSS observables.32

• Experimental verification of the presented methods using data collected during a unmanned
aerial vehicle (UAV) test flight mission.34
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Organization

The article is organized by first presenting the necessary mathematical notations and2

definitions. Then, the kinematic modeling, which the INSs are based upon, and the respective
inertial sensor models are presented. After that, an overview of the nonlinear observer structures4

are presented before going into detail by presenting the attitude observer. The presentation
follows with the two TMOs, estimating the position, linear velocity and specific forces. The6

TMO required for the loosely coupled integration scheme is presented first, then the tightly
coupled GNSS/INS integration scheme is presented, both with the respective GNSS noise and8

error models. The experimental verification of the presented methods and algorithms concludes
the article.10

Notation and Preliminaries

The Euclidean vector norm is denoted as ‖ · ‖2. The column vector (z1; z2) describes the12

vector z1 stacked over the vector z2. The set Ik is a set containing the indices of available
measurements at time t = k ·T where T indicates the sampling interval and k is the time index.14

E[·] denotes statistical expectation, while the exponential function is denoted e(·). The identity
matrix of dimension n is denoted In, and 0n×n symbolizes a n × n matrix of zeros, or just 016

where the dimensions are implicitly given by the context. To simplify the notation, usually the
time dependency is implicitly given.18

A unit quaternion q = (sq; rq) with ||q||2 = 1 consists of a real part sq ∈ R and a vector
part rq ∈ R3. For a vector x ∈ R3, with transpose xᵀ, we denote by x̄ the quaternion with zero20

real part and vector part x, that is x̄ = (0; x). The Hamiltonian quaternion product is given by
⊗, the vector cross product is denoted ×, and for a vector x ∈ R3 we define the skew-symmetric22

matrix

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,

with x = (x1;x2;x3). A block diagonal matrix M is indicated with M =24

blockdiag (M1,M2, . . . ,Mn) for some square matrices M1,M2, . . . ,Mn. The Moore-Penrose
pseudo inverse is denoted †. The sinc function is defined as26

sinc(α) :=

1 for α = 0

sin(α)
α

otherwise,
(1)

for an angle α. Gaussian white noise n with mean µ and variance σ2 is given as n(µ, σ2).
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Superscript indexes is used to indicate the coordinate system in which a given vector
is decomposed, thus xa and xb refers to the same vector x decomposed in the coordinate2

systems indexed by a and b, respectively. The rotation between these coordinate systems may
be represented by a quaternion qba. The corresponding rotation matrix is denoted R(qba). The rate4

of rotation of the coordinate system indexed by b with respect to a, decomposed in c, is denoted
ωcab.6

In the following, e denotes the Earth-Center-Earth-Fixed (ECEF) coordinate system, b for
the vehicle BODY-fixed coordinate system, and i for the Earth-Centered Inertial (ECI) coordinate8

system.

Discretization and Measurements Samples10

For the discrete-time implementation, the discretization interval T and a discrete time index
k are utilized such that the continuous time variable t is related to T and k with t = kT (for a12

constant T ).

At a given index k all valid measurements at time t = kT are contained in the measurements14

set Ik of measurements. If the i’th measurement is available and valid, this is indicated by i ∈ Ik.
The opposite case is denoted as i /∈ Ik.16

Modeling

Kinematic Model18

The rigid body kinematic model follows from [16] and [28],

ṗe = ve, (2)

v̇e = −2S(ωeie)v
e + f e + ge(pe), (3)

q̇eb =
1

2
qeb ⊗ ω̄bib −

1

2
ω̄eie ⊗ qeb , (4)

where pe, ve, f e ∈ R3 are position, linear velocity and specific force in the ECEF frame,
respectively.20

The attitude of the vehicle is represented by a unit quaternion qeb . It represents the rotation
from BODY to ECEF, and ωbib represents the rotation rate of BODY with respect to ECI, while22

ωeie = (0; 0;ωie), where ωie represents the Earth’s rotation rate, which is assumed to be constant.
Equivalently, by representing the attitude as a rotation matrix, (4) is realized as24

Ṙe
b = Re

bS(ωbib)− S(ωeie)R
e
b. (5)
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The known vector ge(pe) denotes the plumb-bob gravity vector, which is a function of the
vehicle’s position decomposed in the ECEF frame and is obtained with a gravity model.2

Inertial and Magnetic Measurements

The inertial sensor model is chosen based upon strapdown technology, that is an IMU
fixed to the BODY frame

f bIMU = f b + εbf , (6)

ωbIMU = ωbib + bbg + εbω, (7)

ḃbg = εbb, (8)

where f b = Rb
e (ae − ge(pe)), with ae being the acceleration relative the Earth measured by4

the IMU and where bbg denotes the gyro/angular rate bias. Accelerometer drift and biases are
assumed to be compensated for using offline and online calibration methods such as [15, Sec.6

VI]. For details on IMUs, see “Inertial Measurement Units”. Reference information about the
heading may be obtained using a magnetometer that measures8

mb
mag = mb + εbm. (9)

The variables εb∗ represent measurement errors. Alternative sensors for providing heading infor-
mation are compasses or GNSS-based heading obtained from multiple receiver measurements10

and a known baseline between the receivers.

With the kinematic vehicle model together with inertial and magnetic measurement models12

presented, the following section introduces the integration of GNSS and inertial measurements.

Nonlinear Observer for Integrated GNSS/INS Navigation14

Overview

The two most common GNSS/INS integration techniques are known in the navigation16

literature as loosely coupled and tightly coupled integration, and are described below.

With loosely coupled integration the receiver’s measurements of position, and sometimes18

velocity, are fused with the inertial measurements. When applying this integration strategy, the
GNSS position and velocity measurements are given as peGNSS = pe + δp and veGNSS = ve + δv20

where δ∗ represents the errors and noise. These are calculated by the receiver, in the ECEF
frame, either with a Least Squares estimator or by using an EKF [5, Ch. 9.4].22
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With a tightly coupled integration strategy, the raw GNSS observables, pseudorange
and Doppler range-rate, are utilized as aiding measurements by relating these to the inertial2

measurements using (2)–(4). In this article, the pseudorange and range-rate measurements are
denoted yi and νi, respectively, representing measurements from the i-th satellite out of m4

satellites in view. These measurements are determined based on the knowledge of satellite
position and velocity, denoted pei and vei , calculated with the help of broadcasted satellite6

ephemeris. More details on GNSS are found in “GNSS – Position Calculation and Error Sources”
and “GPS: The First GNSS – Signals and Positioning Services”.8

An advantage of the loosely coupled approach is the ease of implementation as the receiver
takes care of all considerations about satellite constellation and integrity of the raw GNSS10

observables. On the other hand this also entails that only complete solutions can be used, whereas
the tight integration approach can use a few raw GNSS observables that would be insufficient12

for a standalone solution. A disadvantage of tightly coupled integration is that not all receivers
grants access to the raw GNSS observables, [5]. Moreover, the implementation and tuning of14

GNSS/INS integration is more straight forward with loosely coupled integration than with tightly
coupled integration due to pseudorange measurements with different elevation angles may have16

considerably different noise characteristics. On the other hand, integrity monitoring is easier
with tightly coupled integration in the range domain compared to its counterpart in the position18

domain since erroneous pseudorange measurements may be excluded while maintaining GNSS
aiding. If a GNSS fault in loosely coupled integration is detected, GNSS aiding is lost until the20

fault has been remedied.

A schematic overview of the difference between the two integration strategies, applying22

the same NLO for attitude determination, is shown in Fig. 3. Two key features are obtained using
the NLO in feedback interconnection with the TMO as depicted in Fig. 3; The first feature is24

that the attitude is estimated without linearization, in opposite to KF-based techniques, making
the attitude observer robust to initialization errors allowing for large initial attitude errors. The26

second, is that the attitude observer is utilizing the estimated specific force in the navigation
frame provided by the TMO as reference vector when calculating attitude corrections. The latter28

feature is particularly useful when the navigation system is accelerated.

Attitude Observer30

The proposed loosely and tightly coupled GNSS/INS integration schemes, are both
dependent on the nonlinear attitude observer. The latter is presented in detail in this section,32

where discretization prior to implementation, also is discussed.
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The attitude observer used is based on [11] and [15], [16], employing complementary
filtering,

˙̂qeb =
1

2
q̂eb ⊗

(
ω̄bIMU −

¯̂
bbg + ¯̂σ

)
− 1

2
ω̄eie ⊗ q̂eb , (10)

˙̂
bbg = Proj

(
−kI σ̂, ‖b̂bg‖2 ≤Mb̂

)
, (11)

σ̂ = k1f
b
IMU ×R(q̂eb)

ᵀsatMf
(f̂ e)

+ k2m
b
mag ×R(q̂eb)

ᵀme, (12)

where k1, k2, kI are gains. kI is the gain of the gyro/angular rate bias estimator, giving an integral
effect in the NLO, whereas Proj(·) is a projection operator ensuring that the gyro/angular rate2

bias is bounded, ‖b̂bg‖2 ≤ Mb̂. See [16] for details. The injection term σ̂ is utilized to correct
the attitude and compensate for the gyro bias in (10), by estimating it in (11), with the goal4

of obtaining an estimate of ωbib with ω̂bib = ωbIMU − b̂bg. The injection σ̂ is based on comparing
the measured vectors in the BODY frame, here specific force and magnetic field from the6

accelerometer and the magnetometer, respectively, with the corresponding reference vector in
the ECEF frame, rotated to the BODY frame using R(q̂eb). If there are discrepancies between the8

two, the nonlinear injection term σ̂ acts as an angular velocity in (10) to compensate for this error.
The reference vectors in question are me, being the Earth’s magnetic field and assumed to be10

known, and the estimated specific force f̂ e. Moreover, satMf
(·) is a saturation operator, such that

specific force estimate remains bounded, ‖f̂ e‖2 ≤Mf . As in [16], f̂ e is obtained from the TMO,12

presented later on, which offers an accurate estimate f̂ e also when the vehicle is accelerated.
This is beneficial, compared to assuming that f e ≈ −ge(p̂e), where the gravity component ge14

is obtained with a gravity model based on the estimated position p̂e, an assumption that holds
only when the vehicle in question is not exposed to acceleration for prolonged periods of time.16

More vector measurement/reference pairs may be added to (12) depending on the application.
A minimum of two colinear vectors are required in order to guarantee convergence regardless18

of the vehicle trajectories. The injection term σ̂ is calculated in a way that resembles how the
linearized attitude error enters the measurement matrix when using the quaternion-based MEKF,20

[6], algorithm to estimate the attitude.
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Alternative Implementation of the Injection Term and Continuous-time gain selection

There exist other alternatives than (12) to construct the vector measurement/reference pairs.
Normalized versions of mb

mag, me, f bIMU and satMf
(f̂ e) can be implemented using

f b =
f bIMU

‖f bIMU‖
, mb =

mb
mag

‖mb
mag‖

,

f e =
satMf

(f̂ e)

‖satMf
(f̂ e)‖

, me =
me

‖me‖
.

By doing so, the gains k1 and k2 can be viewed as cut-off frequencies of a complementary
filter as described in [11], [19] with the same unit as the angular velocity ωbIMU in (12) since
the vector pairs become dimensionless. This means that for motion with frequencies above k1

(rad/s), the rate gyro is the primary sensor used for estimating the attitude in the directions excited
by the first reference vector, while for lower frequencies, the first reference vector correction
dominates. Similarly k2 essentially determines the cut-off frequency for use of low-frequency
information from the second reference vector. Furthermore, the construction of vector pairs may
be additionally extended, inspired by the TRIAD algorithm [29], by crossing the k-th vector
pair with the previous vector pair, making the vectors in each frame perpendicular to each other.
Hence, the new vectors v1

b, v1
e, v2

b and v2
e take the form of,

v1
b = f b, v2

b = f b ×mb,

v1
e = f e, v2

e = f e ×me,

resulting in σ̂ becoming,2

σ̂ = k1v1
b ×R(q̂eb)

ᵀv1
e + k2v2

b ×R(q̂eb)
ᵀv2

e, (13)

with the possibility to increase the attitude estimation performance compared to using (12).

Alternatively, a linearization of the complementary attitude filter is provided in eq. (37) in4

[19], and may be used to develop an optimal gain selection algorithm given the noise covariances.

Discretization of the Attitude Observer6

The rate gyro measurements are integrated at a high rate f = 1/T , updating the attitude
estimates whenever a new angular rate measurement is available, as in [19]. If T is small enough
to assume that ω̂(t) remains constant between samples, the exact discretization of the kinematic
equation (10), is obtained using

q̂eb [k] = e(T2 Ω(ω̂[k]))e(−T2 Ω̄(ωeie))q̂eb [k − 1], (14)
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where

ω̂[k] = ωbIMU[k]− b̂bg[k − 1] + σ̂[k],

Ω(ω) =

(
0 −ωᵀ

ω −S(ω)

)
, Ω̄(ω) =

(
0 −ωᵀ

ω S(ω)

)
,

e(T2 Ω(ω)) = cos

(
T

2
‖ω‖2

)
I4

+
T

2
sinc

(
T

2
‖ω‖2

)
Ω(ω),

and

e(−T2 Ω̄(ω)) =

(
cos

(
T

2
‖ω‖2

)
I4

+
T

2
sinc

(
T

2
‖ω‖2

)
Ω̄(ω)

)−1

.

According to [19], the expressions cos (·) and sinc (·) can, in practice, be approximated for by
their first- or second-order approximation or by using a lookup table to increase the computational2

efficiency of (14). After (14) is calculated, re-normalization of q̂eb is carried out to account for
numerical round-off errors,4

q̂eb [k] =
q̂eb [k]

‖q̂eb [k]‖
. (15)

The gyro bias estimate can be updated using exact integration of (11) as

b̂bg[k] = b̂bg[k − 1]− T kI [k] σ̂[k], (16)

where a projection algorithm, such as that of [15], is straightforward to add. In this implementa-6

tion, one or both terms in σ̂[k] is not included if there is no valid vector measurement available
at time index k. To ensure that the cut-off frequency, chosen for each measurement vector, maps8

from continuous to discrete time, σ̂[k] is implemented as

σ̂[k] = σ̂1[k] + σ̂2[k], (17)

such that if i = 1 ∈ Ik, then σ̂1[k] is implemented by10

σ̂1[k] =
δtacc

T
k1[k] v1

b[k]×R(q̂eb [k − 1])ᵀv1
e[k], (18)

else σ̂1[k] = 03×1. If i = 2 ∈ Ik, then

σ̂2[k] =
δtmag

T
k2[k] v2

b[k]×R(q̂eb [k − 1])ᵀv2
e[k], (19)

else σ̂2[k] = 03×1. δtacc and δtmag denote the time intervals since the previous valid accelerometer
and magnetometer measurements were available, respectively. This ensures that gains and
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bandwidth of the respective vector measurements are independent of sampling frequency and
only decided by the continuous-time cut-off frequencies k1 and k2. Typically, the specific force
measurement is available at the same rate as the rate gyro readings such that δtacc = T . In this
case

σ̂1[k] = k1[k] v1
b[k]×R(q̂eb [k − 1])ᵀv1

e[k],

if i = 1 ∈ Ik. This implementation strategy assumes that a valid specific force measurement
is available when a new magnetometer measurement is available due to the cross product of2

normalized vectors embedded in the implementation of σ̂2[k]. An outline of the implementation
of the nonlinear attitude observer is presented in “Algorithm 1”.4

The described implementation strategy, for nonlinear and potentially low-rate injection
terms is in compliance with the corrector-predictor scheme presented in [20, Ch. 11.3.4] and6

allows for k1, k2 and kI to be time-varying.

With the attitude estimator defined, the following two sections present the loosely and tightly8

coupled TMOs in detail.

Loosely Coupled Translation Motion Observer10

The TMO presented first is used together with the attitude observer to perform the loosely
coupled GNSS/INS integration. In addition to the algorithm itself, conditions for stability, and12

gain selection are presented. Discretization and implementation considerations are also covered.

For loosely coupled GNSS/INS integration, the TMO is obtained from [16],
˙̂pe = v̂e + θK0

pp(p
e
GNSS − p̂e)

+K0
vp(v

e
GNSS − v̂e),

(20)

˙̂ve = −2S(ωeie)v̂
e + f̂ e + ge(p̂e)

+ θ2K0
pv(p

e
GNSS − p̂e)

+ θK0
vv(v

e
GNSS − v̂e),

(21)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU

+ θ3K0
pξ(p

e
GNSS − p̂e)

+ θ2K0
vξ(v

e
GNSS − v̂e),

(22)

f̂ e = R(q̂eb)f
b
IMU + ξ. (23)

The rotation matrix R(q̂eb) is obtained from the standard formula R(q̂eb) = I3+2sqS(rq)+2S2(rq).14

The state ξ is an auxiliary parameter/state, necessary to assist the estimation of the specific force
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f e, motivated by the analysis in [27] applied in [16], [17]. This state couples the rotational and
translational motions, facilitating precise attitude estimation also when the vehicle is accelerated.2

The feedback of f̂ e from the TMO to the attitude observer requires stability analysis leading to
some restrictions on the observer gains, that are discussed next.4

Stability Conditions

The TMO for loosely coupled integration can now be written as a continuous-time linear6

system,

˙̂x∗ = A∗x̂∗ +B∗u∗ +D∗(t, x̂∗) +K∗(y − C∗x̂∗), (24)

with the state, input and output, defined respectively as

x̂∗ := (p̂e; v̂e; ξ),

u∗ := (f bIMU;−S(σ̂)f bIMU),

y := (peGNSS; veGNSS),

and with the matrices,

A∗ =

03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3

 ,

B∗ =

 03×3 03×3

R(q̂eb) 03×3

03×3 R(q̂eb)

 , D∗(t, x̂∗) =

 03×1

ge(p̂e)− 2(ωeie)v̂
e

03×1

 ,

C∗ =

(
I3 03×3 03×3

03×3 I3 03×3

)
,

K∗ =

Kpp Kvp

Kpv Kvv

Kpξ Kvξ

 =

 θK0
pp K0

vp

θ2K0
pv θK0

vv

θ3K0
pξ θ2K0

vξ

 ,

such that the system (A∗, B∗, C∗) is both controllable and observable.8

For the nominal case when there are no sensor errors or noise, the uniform semiglobal
exponential stability (USGES) of the feedback interconnection of the attitude and translational10

motion observers is established in [16] under the following conditions:

• The two attitude reference vectors are not colinear. This is satisfied if there exists a constant12

cobs > 0 such that ||me × f̂ e||2 ≥ cobs or ||v1
e × v2

e||2 ≥ cobs. Temporary violation of this

13



assumption can be tolerated since the attitude estimate can be updated using only the angular
rate measurements for shorter periods of time.2

• Attitude observer parameters satisfy k1, k2 ≥ kP for some kP > 0 and kI > 0.
• The constant gains in the matrix

K0 =

 K0
pp K0

vp

K0
pv K0

vv

K0
pξ K0

vξ

 ,

of the TMO can be chosen arbitrarily provided that the linear error dynamics matrix A∗ −4

K0C∗ is Hurwitz, and θ ≥ θ∗, where θ∗ ≥ 1 is sufficiently large, [16]. The intuitions behind
a large θ is that it implies that the estimate of f̂ e is dominated by the GNSS measurement6

such that the attitude estimation errors do not lead to a large error in f̂ e, which could
otherwise destabilize the attitude observer.8

The practical implication of the USGES stability properties is the robustness to arbitrarily large
initialization errors in both position and attitude since no linearization is needed in the nonlinear10

attitude estimator.

Continuous-time Gain Selection12

The gain conditions of [16], reviewed above, are of limited practical use since they are
general and sufficient (not always necessary) conditions where a non-conservative bound θ∗ may
be difficult to find. Moreover, θ∗ also depends on the attitude observer gains k1, k2, kI . In a
practical approach to tuning, the gains in the matrix K0 of the TMO may be tuned using a
minimum-variance estimation criterion by taking into account the influences of noises on its
measurements. This is done by choosing θ = 1 and

Q∗ = blockdiag(Sf , Sσ̂f ), R = blockdiag(Sp, Sv),

as input and output noise covariance matrices, respectively. Regarding R, the matrices Sp and Sv
represents the covariance matrices of the position and velocity measurement noise components εp
and εv, respectively. In practice the GNSS position and velocity measurements are time-varying
and correlated as the user position estimates are used to determine the user-to-satellite line-of-
sight (LOS) vector in the velocity computation procedure. An alternative can then be to include
cross terms Spv and Svp such that

R =

(
Sp Spv

Svp Sv

)
, Spv = Svp.

The covariance matrices Sf and Sσ̂f are obtained from the accelerometer’s measurement noise
by Sf = E[εfε

ᵀ
f ] and Sσ̂f = E[S(σ̂)εfε

ᵀ
fS

ᵀ(σ̂)]. The latter term goes to a steady-state value14

when the attitude estimates has converged.

14



A gain matrix that gives an approximately minimum variance estimate is given by the
Riccati equation solution P ∗ = (P ∗)ᵀ > 0 motivated by the fact that the TMO’s error dynamics
are identical to the time-scaled error dynamics of the Kalman-Bucy filter [30]

K0 = P ∗(C∗)ᵀR−1, (25)

1

θ
Ṗ ∗ = A∗P ∗ + P ∗(A∗)ᵀ +B∗Q∗(B∗)ᵀ

− P ∗(C∗)ᵀR−1C∗P ∗.

(26)

One reason for (24)–(26) only being an approximately minimum variance estimator is that
q̂eb and σ̂ are correlated with f bIMU. Therefore the accelerometer’s noise εf and the accompanying2

covariance Sf are correlated with B∗. The result of [26, Lemma 6] shows that it is possible
to choose θ independently from P , using the time-varying Riccati equation (26) such that the4

USGES stability properties posed in [16] still hold when calculating the gains with (25)–(26).
However, choosing θ > 1 is suboptimal with respect to the minimum variance optimization6

problem the Kalman-Bucy filter solves. In addition, the covariance matrix Sσ̂f , associated with
ξ, is not necessarily straight forward to determine since S(σ̂) is correlated with εbf . These terms8

are also further correlated with R(q̂eb). As an alternative, ad hoc tuning of Sσ̂f can be considered.
By always choosing Sσ̂f larger than zero, the gains associated with the state ξ never become10

zero, guaranteeing stability.

The TMO realization presented above can be referred to as a direct filter or total state12

implementation in the navigation literature, [3, Ch. 7.4]. In practice, this means that the filter’s
Riccati equation (26) is implemented at the frequency of the IMU and that the aiding sensors14

are used to correct the INS when available. As a result, for high integration frequencies,
the computational burden might be considerable. Therefore, more computationally efficient16

alternatives are desirable, while still maintaining time-varying gains. This is possible to achieve
since the time-varying dynamics of (26) is slowly-varying.18

Example

To study the effects of the gain synthesis suggested for the feedback-interconnected20

observer above, inertial sensors and position measurements with white Gaussian noise are
simulated, and both fixed and time-varying gain schemes are applied to the observers. This is a22

simplification, made for illustrative purposes, since in general both position and inertial sensors
provide measurements containing noise with colored spectral content. The results are trans-24

formed to North-East-Down (NED) coordinates. Conversion from ECEF to NED coordinates is
performed by first acquiring the estimated latitude µ̂ and longitude l̂ from the position estimate p̂e26

for instance in closed form with [31]. This information is then used to rotate the ECEF estimates
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to NED with the quaternion q̂en = q̂µ⊗q̂l, where q̂µ = (cos((µ̂+ π/2)/2), 0, sin((µ̂+ π/2)/2), 0)ᵀ

and q̂l =
(

cos(l̂/2), 0, 0,− sin(l̂/2)
)ᵀ

.2

The respective transient performance is shown in Figs. 4–6 implemented with IMU noise
characteristics εω = n(0, 0.00252) and εf = n(0, 0.052) using position as the only aiding TMO4

measurement. The GNSS noise characteristics where realized using εp = (εpn ; εpe ; εpd) with
εpn = n(0, 1.12), εpe = n(0, 1.12), and εpd = n(0, (1.5 · 1.1)2) such that the GNSS is less6

accurate in the vertical component after converting to NED.

The fixed-gain synthesis is done with θ = 1 and the algebraic Riccati equation,8

A∗P ∗ + P ∗(A∗)ᵀ +B∗Q∗(B∗)ᵀ

− P ∗(C∗)ᵀR−1C∗P ∗ = 0.
(27)

For both observers, the TMOs were synthesized using Sf = 0.052 · I3, Sσ̂f = 0.5 · 0.052 · I3

and Sp = blockdiag(1.1 · I2, 1.652), after converting from ECEF to NED coordinates, with10

initial NED position and attitude error of p̃(0) = [10,−7, 4]ᵀ m and φ̃(0) = 10, θ̃(0) = 7,
ψ̃(0) = −10 degrees, respectively. The attitude gains where chosen as k1 = k2 = 0.5, kI = 0.01.12

In the time-varying filter implementation the initial covariance P (0) was chosen as P (0) =

blockdiag(102·I3, I3, I3). A third case was also run with higher attitude gains k1 = k2 = 20 during14

the first 100 seconds, together with the time-varying TMO solution. The transient performance
obtained is based on simulated sensors at rest.16

The transient performance of the position, velocity and attitude errors is improved using
the time-varying Kalman filter to synthesize the TMO as seen in Figs. 4–6. As indicated, in18

Fig. 6 by improving the TMO’s estimates, improvements in the attitude convergence properties
are also obtained. The fastest attitude covariance properties are witnessed with both a time-20

varying TMO and higher prescribed initial attitude gains as seen in Fig. 6. What also can be
seen from Figs. 4–5, is that the convergence properties of the position and velocity estimates are22

not improved by time-varying attitude gains. It can also been seen in Figs. 4–6 that the estimates
have to fully converged at 100 seconds. This is due to the gyro bias estimates have not yet fully24

converged to the true gyro biases.

Position Space GNSS Error Models26

The position and velocity measurements provided by the GNSS receiver’s least squares
estimator or EKF are subjected to time-varying errors inflicted by three main effects; Satellite28

errors, signal propagation errors and receiver errors [4, Ch. 7], as presented in “GNSS – Position
Calculation and Error Sources”.30
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The GNSS position and velocity errors can be characterized by their spectral contents.
Using spectral factorization and a state-space realization of the resulting filtered white noise2

processes for loosely coupled integration leads to an m-th order linear error model on the form

ż = Fz +Gn, δ = Hz + εpv, (28)

where δ = (δp; δv) ∈ R6 represents the position and velocity errors, and εepv ∈ R6 and n ∈ R6 are4

vectors with unity white noise where n ∼ (0, 1) and εepv ∼ (0, σ2
pv). Hence, the receiver outputs

position and velocity estimates peGNSS = pe + δp and veGNSS = ve + δv, respectively. The model6

(28), related to the GNSS position measurements can be chosen to be a first-order Gauss-Markov
process [32], [33]. By defining z := (zp; zv), the dynamic GNSS position error is represented8

by the system
żp = Fpzp +Gpnp, δp = Hpzp + εp, (29)

with Fp = −1/Tp, where Tp is the correlation time constant. Gp is chosen equal to the appropriate10

standard deviation of the driving noise.

It is evident that even though the GNSS velocity measurements can be very precise (RMS12

error of down to 0.1 m/s), these also contain some dynamic errors, depending on satellite
geometry and the resulting effects on measurement precision. See “GPS: The First GNSS14

– Signals and Positioning Services”. Moreover, for the dynamic error of the GNSS velocity
measurement can be represented by16

żv = Fvzv +Gvnv, δv = Hvzv + εv. (30)

By choosing Fv = −1/Tv where Tv is the assumed correlation time and Gv corresponding to the
standard deviation of the driving noise (30), the steady-state covariance of the Gauss-Markov
processes zp and zv become

Pzp(∞) = −1

2
F−1
p GpG

ᵀ
p, Pzv(∞) = −1

2
F−1
v GvG

ᵀ
v, (31)

respectively for sufficiently long measurement periods since Fp = F ᵀ
p , Fv = F ᵀ

v . For higher-order
models Pz?(∞) is obtained by solving18

F?Pz? + Pz?F
ᵀ
? +G?G

ᵀ
? = 0l×l, (32)

where ? is a placeholder for p or v and l being the dimension of F?.

Augmented TMO for Loosely Coupled Integration Including GNSS Error Models20

To account for colored GNSS measurement noise, the TMO is augmented with an estimator
of the noise dynamics22

˙̂z = F ẑ +Kpz(p
e
GNSS − p̂e − δ̂p)

+Kvz(v
e
GNSS − v̂e − δ̂v),

(33)
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such that the augmented state vector becomes x = (x∗; z) which is leads to

ẋ = Ax+B1u
∗ +B2n+D, (34)

and the corresponding TMO2

˙̂x = Ax̂+B1u
∗ +D(t, x̂) +K(y − Cx̂), (35)

where the augmented system is defined by

A =

(
A∗ 09×l

0m×9 F

)
, C =

(
C∗, H

)
,

B1 =

(
B∗

0l×6

)
, B2 =

(
09×l

G

)
,

B =
(
B1 B2

)
, D(t, x̂) =

(
D∗(t, x̂)

0l×1

)
,

K =

(
K∗

Kz

)
,

and where B is used to calculate K = θL−1
θ K0Eθ from the augmented equivalent of (25)–(26),

that is

K0 = PCᵀR−1, (36)

1

θ
Ṗ = AP + PAᵀ +BQBᵀ

− PCᵀR−1CP,

(37)

with

Lθ = blockdiag

(
I3,

1

θ
I3,

1

θ2
I3, Ilp ,

1

θ
Ilv

)
, (38)

Eθ = CLθC
†. (39)

Moreover, l is the degrees of freedom of the Gauss-Markov process and the dimension of G
relating the driving noise n to the augmented state z. lp and lv are the respective dimensions4

of the GNSS position and velocity error models. If only the position measurement is corrupted
by colored noise, l := 3 resulting in Lθ = blockdiag (I3, 1/θ · I3, 1/θ

2 · I3, Il). However, if this6

is also applicable for the velocity measurement, l := 6 with the spectral factorization chosen
above. The pair (A,C) can be shown to always be observable for any Tp, Tv > 0 when the8

chosen spectral factorization results in a first-order Gauss-Markov process since

rank(O) = 9 + l, (40)
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where

O =
(
C;CA; . . . ;CA9+l−1

)
, (41)

hence satisfying Kalman’s rank condition of observability of linear time-invariant systems, [30].2

With this state-space augmentation, and by defining Q = blockdiag (Q∗, Il), the TMO is realized
using (35) where the gain can be obtained using (36)–(37).4

Example Continued: Effects of colored GNSS noise

GNSS position and velocity measurements contain colored noise components, as presented
in “GNSS – Position Calculation and Error Sources” and “GPS: The First GNSS – Signals
and Positioning Services”. To illustrate the effect of the colored noise on the GNSS/INS
integration performance, induced by (28), a GNSS receiver is simulated, at high latitude, where
the measurement is given in the NED frame, pnGNSS = pn+zp+εp and vnGNSS = vn+zv +εv and
the model parameters are chosen as F = blockdiag(Fp, Fv) and G = blockdiag(Gp, Gv) with

Fp = −1/Tp · I3, Fv = −1/Tv · I3,

Gp = diag(1.2, 0.7, 2),

Gv = diag(1, 1, 2).

The time constant of the position error was chosen to be Tp = 1100 s as in [32], [34, Ch 7.5],6

while the time constant for the velocity was chosen as Tv = 2 s. The latter was chosen based on
the assumption that the GNSS velocity measurements, obtained from the receiver, primarily are8

based on the Doppler range-rate measurements. The time constant related to these can be much
smaller than for the noise embedded in the C/A code-based pseudoranges. This is due to the10

GNSS carrier phase and code observables being affected differently by various error sources.
Furthermore, with this choice of G, it is taken into account that the horizontal measurements are12

more accurate than the vertical counterparts and that the eastern measurements are more precise
than the northern at higher latitudes using GPS. The chosen noise and bias parameters related to14

the simulated inertial sensors are equal to those presented in the previous simulation example.

The motion simulated is of a small UAV flying in a circular motion with a speed 25 m/s16

and with a constant altitude of 150 meters over ground. The UAV is flying with a constant
yaw rate with a roll angle and pitch angles of φ = −3 and θ = 2 degrees, respectively. The18

North-East motion in shown in Fig. 7.

Case 1: Only GNSS Position measurement available: This first case is simulated with only20

position measurements available.
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Figs. 8–9 show the position estimation error and performance of the GNSS colored noise
estimation. It is obvious that even though rank (O) = 12, such that the pair (A,C) is observable,2

the GNSS transient error is not captured by the model augmentation. Due to the stochastic
properties, in this case, the system (A,C) is only weakly observable as indicated by the estimation4

error covariance P . Fig. 10, based on the stationary estimation error covariance P (∞) shows
the error ellipsis, with 95% confidence interval, illustrating that the states associated with the6

colored GNSS noise are highly correlated with the position error. Hence, it can be expected that
the position covariance is close to that of (31), the Gauss-Markov process describing the colored8

noise.

Case 2: GNSS position measurements together and a velocity measurement with white noise: In10

this case, unrealistic GNSS velocity measurements are added, containing the true velocity and
only corrupted with white noise for illustrative purposes.12

Figs. 11–12 show the position estimation error and performance of the GNSS colored noise
estimation error when the velocity measurements, only corrupted with white noise, are added14

as an aiding measurements in the TMO. The deterministic observability properties are still the
same with rank 12, however the performance has increased significantly. Hence, now the TMO16

is able to track the colored GNSS position error to a large extent. This is reflected in Fig. 11
where the position estimation error is reduced compared to the performance shown in Fig. 8.18

Case 3: GNSS position and velocity measurements containing colored noise: In this last case,
a more realistic GNSS velocity measurement is used, having some dynamic error such that20

vnGNSS = vn+zv+εv, as described earlier, where zv is generated as a Gauss-Markov process with
time constant Tv = 2. Related to case 2 only minor differences are seen considering Figs. 13–1422

compared to Figs. 11–12. The augmented observer structure of (35) is able to utilize the velocity
measurements with colored noise, hence improving the position accuracy compared to Case 124

and Figs. 8–9. Even though the absolute position error is reduced compared to Case 1, the
covariance of the estimation error still indicates the same problem; the TMO may still struggle26

to distinguish the colored noise of the position measurements from the true position as seen in
Fig. 15 showing the error ellipsis of P (∞), where the cross correlation between the p̃ and z̃p28

still is significant, however reduced compared to case 1 where only the position measurements
were used.30

Discussion:
The reason why the augmented observer, applying loosely coupled GNSS/INS integration, (35),
struggles to separate the true position from the slowly-varying colored GNSS noise is the
relatively high noise in the IMUs accelerometers. Since the rotated accelerometer noise is
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integrated twice in the TMO, the TMO gains are synthesized, using (36)–(37), such that the
uncertainty in the position estimate is minimized and by that stabilizing the observer. Hence,
the gains, in practice, become so large that the position estimate in the observer tracks the
slowly-varying colored GNSS noise. To illustrate this, a Bode diagram, related to the northern
position estimation error and the GNSS errors from Case 1 is shown in Fig. 16. The transfer
functions shown, are the IMU noise εnf rotated to the NED frame, to the position estimation
error p̃ = pn − p̂n, and the transfer function from the input of the GNSS colored noise model
np to the output of the model zp. These are denoted

p̃

εbf
= hINS(s), (42)

hINS(s) = C̄ (sI3 − (A∗ −K∗C∗))−1K∗C∗, (43)

where C̄ = [I3, 03×3, 03×3] and

zp
np

= hCN(s), (44)

hCN(s) = I3 (sI3 − (Fp))
−1Gp, (45)

respectively. It is evident from Fig. 16 that the INS has higher bandwidth than the GNSS colored
noise. This is due to the gains synthesis obtained from (36)–(37) is emphasizing the correction2

of the position estimate significantly more than the update of corresponding GNSS error state.
As a result, the estimated position tracks the colored noise contained in the GNSS position4

measurements regardless of the model augmentation.

The results from Case 3 indicate that velocity measurements are beneficial to improve6

the position estimation accuracy, using loosely coupled GNSS/INS integration. However, the
parameters representing the colored noise characteristics are time-varying and difficult to know in8

general. These are highly receiver dependent, and dependent on the user’s location on Earth with
respect to satellite geometry, elevation of the satellites, the ionosphere, and whether the Doppler10

observables are utilized in the GNSS’s receiver estimator. In particular, knowledge on how the
velocity measurements are calculated is difficult to know using off-the shelf equipment. Typically,12

the current position estimate is used in the velocity estimation process to determine user-to-
satellite LOS vectors or to estimate the receiver’s velocity without the Doppler measurement,14

yielding that the position information is being accounted for twice in the GNSS/INS observer.
Knowing the cross correlation between the position and velocity measurements are of utmost16

importance in such situations. If not known, using only the position measurements may be
advised.18
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Discretization of TMO

The main principle for the discrete-time implementation is to approximate the continuous
time behavior despite the finite data rate. It implies that the estimates are only updated when
the output measurements contained in the injection terms are valid, and otherwise integrate the
model using measured inputs at their highest available update rate. Measurement updates can be
processed sequentially by a KF, assuming the measurements are uncorrelated such that the R
matrix is diagonal, with benefits for processing structure and complexity [3], [5]. Due to the close
relationship between (36)–(37) and the KF, a similar strategy can be applied also for NLOs. The
TMO (35) is straightforward to discretize due to its linearity and the simple A-matrix, allowing
for exact discretization of the unforced dynamics. In particular, the one-step ahead predicted
state, x− can be computed by

x−[k + 1] = eATx+[k]

+

∫ (k+1)T

kT

eA
(
(k+1)T−τ

)
B1(τ)u

∗(τ) dτ

+

∫ (k+1)T

kT

eA
(
(k+1)T−τ

)
D(τ)dτ,

(46)

from the estimate x+[k], where

Ad = eAT =


I3 TI3

T 2

2
I3 03×l

03×3 I3 TI3 03×l

03×3 03×3 I3 03×l

0l×3 0l×3 0l×3 eFT

 , (47)

based on the model parameters of (35). Assuming the specific force input, the rotation matrix
and the gravity vector are constant between the sampling intervals, f bIMU(t) = f bIMU[k], R(t) =

R(qeb [k]) and ge(pe(t)) = ge(p̂e[k]), for t ∈ [kT, (k + 1)T ), the definitions follows from (46)

Bd,1[k] :=


T 2

2
R(q̂eb [k]) T 3

6
R(q̂eb [k])

TR(q̂eb [k]) T 2

2
R(q̂eb [k])

03×3 TR(q̂eb [k])

0l×3 0l×3

 ,

Bd,2[k] :=

(
09×l

F−1
(
eFT − 1

)
G

)
,

Bd[k] =
(
Bd,1[k] Bd,2[k]

)
,

Dd[k] :=


T 2

2

(
ge(p̂[k])− 2S(ωeie)v

e[k]
)

T
(
ge(p̂[k])− 2S(ωeie)v

e[k]
)

03×3

0l×3

 .
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Then, the state estimate can be recursively propagated by iterating through the time update

x−[k + 1] = Ad[k]x+[k] +Bd,1[k]u∗[k] +Dd[k],

P−[k + 1] = Ad[k]P+[k]Aᵀ
d[k] +Bd[k]Qd[k]Bᵀ

d [k],

many times as necessary. Qd can be approximated as Qd = Q · T . Alternatively, the term
Bd[k]Qd[k]Bᵀ

d [k] can be replaced with Q̄d calculated by using van Loan’s method [21, p. 126],2

from [35].

If all measurements in the vector y[k] were available at time index k, a gain matrix Kd[k]

can be calculated in the same way as the discrete-time KF, [3], [5]

Kd[k] = P−[k]Cᵀ[k]
(
C[k]P−[k]Cᵀ[k] +R[k]

)−1
,

and the updated estimate could be obtained as

x̂+[k] = x−[k] +Kd[k]
(
y[k]− C[k]x−[k]

)
,

P+[k] = (I9+l −Kd[k]C[k])P−[k].

If measurements with indices in the set Ik are available at time index k, they can be proceed
sequentially as follows, [3], [5]. First, use the propagated estimate and covariance,

x̂+[k]← x−[k],

P+[k]← P−[k],

as the starting point for the update loop. Then, for each i ∈ Ik, where Ik is set of aiding
measurements available at time t = kT in time, loop through the updates

Kd,i[k]← P+[k]Cᵀ
i [k]/(Ci[k]P [k]Ci[k]ᵀ +Rii[k]),

x̂+[k]← x̂+[k] +Kd,i[k]
(
yi[k]− Ci[k]x̂+[k]

)
,

P+[k]← (I9+m −Kd,i[k]Ci[k])P+[k],

where Ci is the i-th row of the matrix C, and Rii is the i-th diagonal element of the matrix R. As4

a result, such implementation yields a corrector-predictor effect where the measurement update
is bypassed for all i 6∈ Ik corresponding to Kd,i[k] = 0. A practical consequence is that the6

elements of the covariance P [k] associated with i /∈ Ik, at a given point in time k, increases due
to the positive definite process noise covariance matrix Qd[k] in the time update. Furthermore,8

for low-frequency measurement updates, the resulting effect is that these are emphasized more
at each measurement correction, when available, than high rate measurements. In comparison,10

the corrector-predictor algorithm of [20, Ch. 11.3.4], for fixed-gain observers, is realized with
an explicit time-scale separation where the gain associated with the low-rate measurement i is12
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multiplied with the rate ratio, of the observer relative the aiding sensor, similar to that done in
the presentation of the attitude observer discretization. An outline of the implementation of the2

TMO in direct form, with non-sequential correction, is presented in “Algorithm 2”.

Time Delay4

If the measurements, typically GNSS and/or magnetometer, [22], used in the NLO
experiences a significant time delay, the resetting of the INS state may be a delayed state6

estimate at the time with index k − j corresponding to the time of validity of the measurement
delayed with j samples relative to current time. In this case the INS also contains a “fast-forward”8

function to rapidly compute the current state estimate based on intermediate IMU measurements.
Efficient implementation methods are given in [23], [24] for such problems.10

Tightly Coupled Translational Motion Observer

This section introduces the TMO for tightly coupled GNSS/INS integration in detail. The12

main difference between the loosely and tightly coupled integration is that the aiding sensor
information from GNSS changes from the position domain to range domain.14

An observer for tightly coupled GNSS/INS integration was presented by [26] where an
altered version of the TMO for the loosely coupled observer, (20)–(23), was introduced. In [26],16

the TMO was integrated with the same attitude observer as presented earlier in this article.

Tightly coupled integration utilize the raw GNSS observables, range and range-rate18

(Doppler) measurements, to alter the TMO injection terms from the position domain to the
range domain. The range measurements yi can either be pseudoranges, obtained with C/A or20

other code-phase techniques, or with carrier-phase based ranges, where the subscript i indicate
measurements from the ith satellite. The range-rate measurement is the Doppler frequency νi22

here measured in meters per second.

The range and range-rate measurements are subject to disturbances and errors represented24

by, for instance, the clock range error β between the atomic satellite clocks and the less accurate
receiver clock. Even a small error in timing can have a large impact as it is multiplied with the26

speed of light. It is therefore vital that β is estimated in the observer. More on error sources and
GNSS/GPS is found in “GNSS – Position Calculation and Error Sources” and “GPS: The First28

GNSS – Signals and Positioning Services”. Other disturbances on the satellite measurements
include ionospheric and tropospheric disturbances which delay the signals due to obstructions30

in the signal path. Such disturbances can be opposed by a dual frequency receiver where a
ionospheric-free linear combination of the two frequency measurements (for instance GPS L132
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and L2) can be formed. The drawbacks of this approach is the higher cost of receiver and
antenna and the increase in noise on the linear combination due to amplification of multipath2

and receiver noise. Another approach is to utilize a dual receiver configuration where the
satellite measurements are differenced with measurements at a known location close by, thereby4

cancelling the delays. In [36] observers using single- and double-differenced measurements are
proposed using an observer structure similar to the one presented here.6

Assuming measurements from at least four satellites (m ≥ 4) are available, the TMO takes
the form of

˙̂pe = v̂e +
m∑
i=1

(Kpp
i ey,i +Kpv

i eν,i) , (48)

˙̂ve = −2S(ωeie)v̂
e + f̂ e + ge(p̂e)

+
m∑
i=1

(Kvp
i ey,i +Kvv

i eν,i) ,
(49)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU

+
m∑
i=1

(
Kξp
i ey,i +Kξv

i eν,i

)
,

(50)

f̂ e = R(q̂eb)f
b
IMU + ξ, (51)

˙̂
β =

m∑
i=1

(
Kβp
i ey,i +Kβv

i eν,i

)
. (52)

The observer structure of (48)–(52) is similar to the loosely coupled equivalent (20)–(23),
however it has different injection terms and it includes estimation of the clock error parameter8

β accounting for synchronization errors between the satellites’ and receiver clocks. The clock
bias error is the reason why at least four, and not three, satellites are required to calculate the10

three position coordinates from the pseudoranges. The error is expressed as a time-varying range:
β := c∆c, where c is the speed of light and ∆c is the clock error. However, due to the injection12

signals ey,i eν,i some colored noise is going to be embedded in β over time. As indicated by
(52), β is assumed constant in the deterministic observer design; β̇ = 0. Incorporating this with14

a minimum variance optimization criterion, similar to (36)–(37), this model might be considered
as a Wiener process, β̇ = nc, in the tuning process, where nc is considered to be Gaussian white16

noise with variance σ2
c representing the drift rate of the receiver’s clock. Hence, the time-varying

dynamics of β is captured by the TMO through the injection terms obtained using the raw GNSS18

observables.

The injection terms of the observer, based on pseudo-range and range-rate measurements,
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are driven by the errors eyi := yi − ŷi and eν,i := νi − ν̂i, with the estimated measurements

ŷi = %̂i + β̂, (53)

ν̂i =

(
p̂e − pei
%̂i

)ᵀ

(v̂e − vei ) , (54)

where the position and velocity of the ith satellite are denoted pei and vei . The estimated geometric
distance between satellite and receiver is given as %̂i = ‖p̂e − pei‖2. The estimation errors are2

defined as p̃ := pe− p̂e, ṽ := ve− v̂e, and β̃ := β−β̂. When estimating the satellite measurements
and geometric distance, the position and velocity of the satellites are assumed known. This4

assumption is satisfied by using the updated ephemeris data to determine position and velocity
of the visible satellite.6

Similar to (35) the observer (48)–(52) can be written

˙̂x = Ax̂+Bu+D(t, x̂) +K(y − h(x̂)), (55)

however with a nonlinear observation vector/matrix h(x̂), and the matrices,

A = blockdiag(A∗, 0), B =

(
B∗

01×3

)
,

D(t, x̂) =


03×1

ge(p̂e)− 2(ωeie)v̂
e

03×1

0

 ,

where the linearized C matrix,8

C =
δh

δx

∣∣∣∣
x=x̂

, (56)

takes the form of

C =



(p̂e−pe1)
ᵀ

%̂1
01×3 01×3 1

...
...

...
...

(p̂e−pem)ᵀ

%̂m
01×3 01×3 1

(v̂e−ve1)
ᵀ

%̂1

(p̂e−pe1)
ᵀ

%̂1
01×3 0

...
...

...
...

(v̂e−vem)ᵀ

%̂m

(p̂e−pem)ᵀ

%̂m
01×3 0


, (57)

when using GNSS pseudorange and range-rate measurements. The time-varying C matrix
consists of estimated LOS vectors describing the direction from rover to each satellite. As the10

distance between rover and satellites is large compare to the relative velocity, the LOS vectors
are slowly time-varying. As illustrated in Fig. 17 the pseudoranges relate to the position pe12
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nonlinearly. Hence, the linerization (56) is necessary to obtain C. If the C matrix is applied to
the augmented version of (26) with A and B to obtain P (t), the observer gain can be calculated2

as

K = θL−1
θ K0Eθ, (58)

with4

K0 = PCᵀR−1, (59)

and

Lθ = blockdiag

(
I3,

1

θ
I3,

1

θ2
I3,

1

θ4

)
, (60)

Eθ = CLθC
†. (61)

The conditions for (48)–(61) are satisfied when four or more pseudoranges are available (except
in degenerate configurations), thereby ensuring observability of the system, [26]. In contrast6

to the loosely coupled GNSS/INS integration, the feedback interconnection of (48)–(52) with
the attitude observer, is only locally exponentially stable, with respect to position and velocity8

initialization errors, since the C matrix is based on linearization of the pseudorange and Doppler
measurement equations using estimated positions. Accurate initialization procedures are easily10

applied, [26], so this is not a significant problem in practice.

To accommodate colored noise, when applying tightly coupled integration, the R matrix12

can be increased in an ad hoc manner. An example using such strategy, is designing a tuning
rule based on the elevation angle of each satellite in view, [5, Ch. 9.4.2.4]. By doing this, it14

is possible to weight pseudoranges from low elevation satellites less than measurements from
high elevation satellites (with high elevation satellites, the GNSS signal travels through less16

atmosphere compared to the signals from the low elevation satellites and therefore has less
errors).18

Augmented TMO for Tightly Coupled Integration Including Clock Error Model

Above, the clock error was modelled in range space as β = c ·∆c with ∆c being the clock20

error. This can be extended further by considering that ∆c is dependent on the clock frequency
error, such that β is no longer considered as a constant, but expressed with a state space model22

with a constant clock frequency error fclock such that β̈ = 0, see [3, Ch. 8.4.3.2], [5, Ch 9.4.2.3]:
24 (

β̇

ḟclock

)
=

(
0 1

0 0

)(
β

fclock

)
+

[
0

nf

]
, (62)
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where nf is the driving process noise assumed to be white. By introducing the additional clock
error state, (52) in the TMO is replaced by

˙̂
β = f̂clock +

m∑
i=1

(
Kβp
i ey,i +Kβv

i eν,i

)
, (63)

˙̂
fclock =

m∑
i=1

(
Kfp
i ey,i +Kfv

i eν,i

)
. (64)

By doing this, (55) is augmented accordingly. With this augmentation, the C-matrix of (57), in
(26), is replaced with Caug, given as2

Caug =
(
C Cf

)
, (65)

where Cf = (01×m; 11×m). The standard deviation of the white noise nf ought to be chosen
small (less than 0.02 m/s as proposed in [3, Ch. 8.4.3.2]). However, by modeling of the clock4

bias as (62), compared to β̇ = 0 as done in [26], only minor effects (centimeter level) on the
estimation of β were observed. Therefore major effects on the position and velocity estimates6

cannot be expected with this augmentation. Also with this clock error model, it is necessary
to take into account that noncompensated common residuals of the time-varying errors due to8

signal delays, in the ionosphere and troposphere or stemming from multipath, may be embedded
in β and fclock since these are the only nuisance parameters related to the GNSS in this TMO.10

Indirect Observer Implementation

With the different GNSS/INS integration schemes based on the NLO presented, some12

further consideration about implementation aspects is discussed in the following section.

INS technology typically utilizes indirect filters, also known as error-state filters, [1], [3],14

[5]. In such filters/observer implementations, the error between the states of the INS and the
corresponding sensor measurements are utilized as states in the error-state filter. Such Kalman16

filters only run at the frequency of the aiding sensors, hence such filters implementations have
lower computational footprint compared to their counterpart, the direct filters. This is due to the18

covariance equations, with the corresponding matrix operations are propagated at significantly
lower rate than the frequency of the INS mechanization. The indirect strategy to solve the20

GNSS/INS integration problem is also based on complementary filtering, presented earlier in
the text.22

Indirect Attitude

The attitude in this case is mechanized and provided to the TMO in a dead reckoning24

fashion at the rate of the IMU as indicated in Fig. 18. The INS mechanization can be made by
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assuming the angular velocity is constant over the integration interval resulting in

Re
b,INS[k] = Re

b,INS[k − 1]
(
I3 + TS(ωbINS[k])

− TS(ωeie)R
b
e,INS[k − 1]

)
,

(66)

where ωbINS[k] = ωbIMU[k] − bbg,INS[k]. For this to be an accurate approximation, it is necessary2

to propagate the attitude at high rates, [37]. This is done to attenuate high-frequency effects
of vibrations and inertial measurements errors, but also to minimize effects from sampling and4

discretization errors.

The nonlinear attitude observer can be realized in indirect form as shown in Fig. 18. The
injection terms are similar to (18)–(19),

σ̂1[k] =
δtacc

T
k1[k] v1

b[k]× (Re
b)

ᵀ
INS[k]v1

e[k],

σ̂2[k] =
δtmag

T
k2[k] v2

b[k]× (Re
b)

ᵀ
INS[k]v2

e[k],

except that the rotation matrix from the INS is applied when calculating σ̂1[k] and σ̂2[k].
Moreover, the scaling parameters δtacc and δtmag have the same function as before, however
with this realization, the attitude may be propagated with the INS mechanization significantly
faster than the estimated attitude is calculated. The attitude estimate may be corrected when a
new measurement from the magnetometer or accelerometer is available. Slower frequencies may
also be chosen. When a new σ̂[k] is calculated, the quaternion q̂eb [k] and gyro bias b̂bg[k] estimates
are calculated using (14) and (16), respectively. Then, the INS’s rotation matrix and the gyro
bias predictions are reset accordingly,

Re
b,INS[k]← R(q̂eb [k]),

bbg,INS[k]← b̂bg[k],

as indicated with dashed-doted lines in Fig. 18. If the attitude update is not carried out at every
INS sample, q̂eb [k − 1] has to be calculated from Re

b,INS[k − 1], using for instance Shepperd’s
algorithm [38], such that

q̂eb [k − 1]← Re
b,INS[k − 1],

before applying (14), to satisfy the assumption that the angular rates have to be constant between6

attitude updates.

Indirect TMO8

The indirect TMO filter realization is inspired by traditional indirect INS filter mecha-
nizations such as [1] where the structure is similar to Fig. 18. In this case, the state vector of10
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the observer consists of the error between the aiding reference and the INS and colored noise
estimate z. First, by defining the INS error vector2

δx∗ :=

δpδv
δξ

 =

pe − peINS

ve − veINS

ξ − ξINS

 , (67)

where INS in subscript indicates the current state of the INS. The indirect filter problem for
loosely coupled integration is then implemented using the state vector given as4

δx[k] =

(
δx∗[k]

z[k]

)
, (68)

including the state augmentation of (35) to take into account that the aiding measurement is
subjected to colored noise similar to the direct implementation strategy presented earlier. It can
be noted that the error state z has no corresponding state in the INS and therefore used directly as
a state in the indirect implementation. For tightly coupled integration, z[k] represents the chosen
state vector of the GNSS clock error model, given as either z[k] = β[k] or z[k] = (β[k] ; fclock[k]).
The corresponding model is then stated as

δx[k] = Ad[k − 1]δx[k − 1]

−Bd[k − 1]w[k − 1],
(69)

δy[k] = C[k]δx+ εpv[k], (70)

with w[k] =
(
εbf [k], S(σ̂[k])εbf [k], n[k]

)ᵀ. By defining xINS := (peINS; veINS; ξINS), the error-state
measurement of (70) is obtained for loosely coupled integration as

δy[k] = y[k]− C∗xINS[k] + εpv[k]

= C∗x[k] +Hz[k] + εpv[k]− C∗xINS[k]

= C[k]δx[k] + εpv[k], (71)

which is the difference between the aiding sensor and the corresponding INS state. Similar
arguments are valid for a tightly coupled integration strategy yielding

δy[k] = y[k]− h (x∗INS[k]) + εpv[k]

= h (x∗[k]) + z[k] + εpv[k]− h (x∗INS[k])

= h (δx[k]) + εpv[k]. (72)

In contrast to a direct observer structure, the time updates have to be carried out before the
measurement update. This is due to the discrete-time model being dependent on the time since6
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the aiding/reference sensor last provided a measurement. This time difference is not necessarily
constant from sample to sample.2

The indirect TMO time update can be written

δx−[k] = Ad[k − 1]δx+[k − 1], (73)

P−[k] = Ad[k − 1]P+[k − 1]Aᵀ
d[k − 1]

+Bd[k − 1]Qd[k − 1]Bᵀ
d [k − 1], (74)

with Ad[k− 1] = eAδt, as presented in (47), where δt = t[k]− t[k− 1] is the time since the last
GNSS measurement was available. Then, with the predictions ahead

δx̂+[k]← δx−[k], (75)

P+[k]← P−[k], (76)

the measurement update may be carried out similar to the discrete time realization of the direct
TMO filter. After the measurement update, the INS state vector is corrected accordingly,4

x+
INS[k] =

peINS[k] + δp̂+[k]

veINS[k] + δv̂+[k]

ξINS[k] + δξ+[k]

 , (77)

to compensate for the estimation error. After the correction, the error-state estimate vector is
reset accordingly,

δx̂+[k] =


δp̂+

δv̂+

δξ+

ẑ+

←


0

0

0

ẑ+

 ,

since the INS state now accounts for the estimated error. The GNSS error state is not reset to
zero since this is an auxiliary state not being part of the INS, as presented in Fig. 18. Therefore,6

the time update of (73) for position, velocity and the intermediate state ξ, associated with δx∗,
is trivial since δ(x∗)+[k − 1] ≡ 0 from time k − 1 to k due to δ(x∗)−[k] = A∗dδ(x

∗)+[k − 1] =8

δ(x∗)+[k − 1] = 0 because of the reset, [3, Ch. 4.10 & 5.10.5.3]. Hence, only the time update
of the GNSS error is necessary,10

z−[k] = Az[k − 1]z+[k − 1], Az[k − 1] = eFδt. (78)

The measurement update related to δ(x̂∗)+ reduces to

δ(x̂∗)+ = K∗[k]δy[k], (79)
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since (x∗)+[k − 1] ≡ 0, while for the error state z[k] the traditional KF measurement update is
utilized, taking the form of

δẑ+[k] = δẑ−[k] +Kz[k](δy[k]− C[k]δx−[k])

= δẑ−[k] +Kz[k](δy[k]−H[k]z−[k]), (80)

for loosely coupled integration and the form of

δẑ+[k] = δẑ−[k] +Kz[k]
(
δy[k]− h(z−[k])

)
, (81)

for tightly coupled integration. Propagation of P+[k−1] and correction of P−[k] is independent2

of resetting and is carried out for all states.

The estimation errors in the direct and indirect schemes are defined as, x̃ := x − x̂ and
δx̃ := δx− δx̂, respectively. Both formulations are equivalent as seen by

δx̃ = δx− δx̂

= (x− xINS)− (x̂− xINS)

= x− x̂ := x̃. (82)

Regarding TMOs in PVA estimation, the indirect formulations have some advantages4

compared to the direct formulation. The indirect scheme is computationally more efficient than
the direct counterpart since the time update and the measurement update are performed at the6

sampling frequency of the aiding sensor. Regarding the time update of the indirect TMO, the
term Bd[k]Qd[k]Bᵀ

d [k] in the covariance update (74) is replaced with Q̄d when performing the8

covariance propagation. In [5, Ch. 14.2.6], it is stated that Qd ≈ Q · T if t[k] − t[k − 1] ≤ 0.2

seconds corresponding to a sampling frequency equal or higher than 5 Hz. Since the GNSS10

measurements are often obtained at a lower frequencies than 5 Hz, it is advised that Q̄d is
utilized and calculated with van Loan’s method, as mentioned above. Then, (74) becomes12

P−[k] = Ad[k − 1]P−[k − 1]Aᵀ
d[k − 1] + Q̄d[k − 1], (83)

where Ad[k−1] can be time-varying, to account for asynchronous measurement aiding (T is not
necessarily constant) since the indirect TMO is only time propagated after a new measurement14

y[k] is available.

Experimental results16

This section presents a comparison of the performance of the discussed observer structures
using experimental data collected during a UAV mission.18
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Experimental verification of the presented observers is carried out using flight data from a
UAV test flight, to verify the observers under realistic conditions with fast dynamics. The UAV2

used is a fixed wing Penguin B UAV configured as listed in Table 1 in the Application Example.
The dataset used here has a length of approximately 22 minutes with a flight part consisting of4

multiple circles and figures-of-eight over an area of one square kilometer.

During the flight, a stationary GNSS receiver of the same type was placed at a known6

location to serve as base station for a real time kinematic (RTK) positioning solution. The RTK
position was computed by the open source software package RTKLIB, [39], where the position8

is obtained using carrier-phase positioning, with a fixed or float integer ambiguity solution,
indicating decimeter accuracy, [5]. The RTK position is used as reference when comparing the10

performance of the loosely and the tightly coupled observer structures. The base station also
logged the transmitted satellite ephemeris data, used to calculate the satellites’ positions and12

velocities. RTK is a type of differential GNSS. For details on differential GNSS, see “GPS: The
First GNSS – Signals and Positioning Services”.14

The loosely and tightly coupled observers are compared. To guarantee a fair comparison,
the standalone GNSS position solution used in the loosely coupled integration is based on the16

tightly coupled observer using solely the pseudoranges as observables. Hence, no IMU is used
to generate this aiding position solution.18

The tuning parameters for the observers are gathered in the Q and R matrices for gain
selection. For the loose integration, the matrices are: Ql = blockdiag(03×3, 10−10 · I3, 2.5 · 10−3),20

Rl = blockdiag(2.5 · I3). For the tightly coupled integration, the tuning matrices are: Qt =

blockdiag(Ql, 1), Rt = blockdiag(1 · Im). The observers use the same constant attitude estimator22

gains: kI = 0.004, k1 = 0.25, and k2 = 0.75.

The comparison of the observers are seen in Fig. 19, depicting the position estimation error.24

Fig. 20 shows the estimated attitude, while Fig. 21 displays the estimated gyro bias. The position
estimation is evaluated in terms of root-mean-square error (RMSE) and standard deviation (STD)26

relative to the RTK solution and summarized in Table 2.

As presented above, tuning of the Q matrix associated with the velocity state is based on28

statistics describing the accelerometer’s noise characteristics. These can either be based on the
data collected or from a data sheet. For a standalone GNSS solution (IMU not used), tuning of30

the Q matrix reduces to an ad hoc procedure based on the assumed host-vehicle dynamics. [5,
Ch. 9.4] recommends 12 m/s2, 102 m/s2 and 1002 m/s2 for pedestrian, automotive and military32

aircraft, respectively associated with the velocity state.
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As seen in Fig 19, the tightly coupled GNSS/INS integration strategy provides the position
estimates with smallest variation and also the smallest deviation from the RTK positioning2

solution. This statement is backed up by Table 2. The difference between a standalone GNSS
solution and loosely coupled integration seems less evident form Fig. 19 and Table 2. This4

is however expected, taking into account the simulation results related to the loosely coupled
GNSS/INS integration and the estimation of colored GNSS noise presented earlier. The benefit6

of loosely coupled integration, relative not using an IMU at all, is however evident in Fig. 22.
The loosely coupled solution provides a smoother estimate than the standalone GNSS solution8

and is hence more suitable to be used in an autopilot that operate at high sampling rate. The INS
also provides fault tolerance when GNSS fails or is degraded. Moreover, one large benefit of10

loosely coupled GNSS/INS, relative to a standalone GNSS solution, is that the attitude estimates
also are obtained with high accuracy.12

As mentioned, the most accurate and precise position estimates relative to the RTK solution
are obtained with the tightly coupled integration strategy. Since the pseudoranges are directly14

fused with the inertial measurements, instead of calculating the GNSS position before using
this as aid in loosely coupled integration, more of the colored noise, embedded in the GNSS16

pseudoranges, is captured by the receiver’s clock bias estimate. This is possible since the
acceleration measurements are available between GNSS samples. Hence, every new position and18

clock error calculation, made by the observer, is based on the current predicted position between
GNSS samples using inertial data rather than using a 0.2 to 1 second old estimate obtained at the20

previous GNSS update. This point however, is mainly relevant for low-cost GNSS receivers, as
higher grade receivers can output raw data at frequencies of 20 Hz or more. A contributing factor22

to the performance differences of the two integration schemes may also be due to the 5 Hz GNSS
update. By sampling the GNSS that fast, more of the pseudorange measurements can become24

correlated in time compared to using 1 Hz position calculation. If differential GNSS is utilized,
more accurate position estimates can be obtained for both integration schemes. For details related26

to differential GNSS, see “GPS: The First GNSS – Signals and Positioning Services”.

The attitude estimates obtained with both loosely and tightly coupled integration are mostly28

similar except from a few significant differences. These differences are most likely due to the
attitude estimate q̂eb has two components, the unit quaternion from BODY to NED qnb and the30

unit quaternion from NED to ECEF qen and how the GNSS information enters the TMOs. The
latter quaternion qen is in principle a horizontal position estimate containing information of the32

craft’s latitude and longitude. Therefore, the attitude estimates from the two integration strategies
may differ as a result of the difference in how the position information enters the TMO due to34

the feedback interconnection with the attitude observer and the TMO through the auxiliary state
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ξ. This again will also affect the gyro bias estimation, seen in Fig. 21, and therefore explaining
that the estimates obtain using tightly coupled GNSS/INS integration resulted in more steady2

estimates compared to applying loosely coupled integration.

Conclusions4

Accurate and precise position, velocity and attitude estimates are needed in numerous areas
such as the automotive, robotics, marine and aircraft applications. The need for computationally6

efficient and robust algorithms achieving this is growing due to a wide-spread interest in
unmanned platforms, such as unmanned aerial vehicles, with potential limited computational8

power available. This need can be met by applying nonlinear feedback-interconnected observers
for integrated GNSS/INS navigation with known stability properties.10

The experimentally verified simulation results, using data collected during a unmanned
aerial vehicle flight, show that the estimation of translational motion (position and velocity)12

benefits from a minimum-variance-like implementation applying the Riccati equation. Using
such an implementation strategy, compared to a fixed-gain strategy, accelerates the observers14

convergence. This is also reflected in the attitude estimates due to the feedback-interconnection
relating the two observers. Furthermore, by using an indirect filter implementation, the com-16

putational burden of estimating position and velocity is reduced. This is due to the fact that
the Riccati equation is updated at the speed of the aiding measurements, in contrast to a direct18

filter, where the time update of the Riccati equation is implemented at the rate of the inertial
measurements.20

The attitude estimates are obtained with an exponentially stable and computationally
efficient observer based on complementary filtering and vector measurements. In contrast to the22

Kalman filter, this is not a stochastic method, but based on the desired observer bandwidth and
nonlinear stability theory. An indirect observer implementation for the attitude estimation is also24

proposed. This structure enables the possibility to not necessarily calculate the attitude correction
at every measurement sample from the inertial measurement unit, while still maintaining the26

INS’s structure.

The results presented here indicate that tightly coupled GNSS/INS integration outperforms28

loosely coupled integration when considering position accuracy. By fusing the pseudorange
measurements directly with the inertial data, more of the colored noise embedded in the30

pseudoranges is captured by the receiver’s clock error estimate, compared to that achieved with
the augmented loosely coupled integration scheme posed.32
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The attitude estimates obtained with both loosely and tightly coupled integration are mostly
similar. Differences are possibly due to the different amount of colored noise being fed from2

the respective translational motion observer to the attitude observer.

Accuracy of the loosely and tightly coupled integration schemes can be increased by4

applying pseudorange corrections using differential GNSS, carrier-phase smoothed pseudoranges
or dual-frequency solutions canceling the ionospheric delay at the expense of increased noise.6
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TABLE 1: Penguin B Unmanned Aerial Vehicle (UAV) Technical Specifications

Engine type: Gasoline
Wingspan: 3.3 m
Length: 2.27 m
MTOW: 21.5 kg
Endurance: 5+ hours
Cruise speed: 28 m/s
Max level speed: 36 m/s
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TABLE 2: Navigation performance comparison

RMSE (x,y,z) [m] STD (x,y,z) [m]

Tightly coupled 3.412 3.341 1.106 1.067 0.561 1.005

No IMU 4.541 3.732 2.184 2.951 1.756 2.065

Loosely coupled 4.442 3.818 2.264 2.836 1.868 2.177
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Figure 1: Penguin B unmanned aerial vehicle (UAV) in flight. Photo: Jakob M. Hansen.
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Figure 2: Flight path. The flight path using a Penguin B Unmanned Aerial Vehicle (UAV) is
shown. Takeoff of the UAV is used as the origin. The flight path is shown in blue, while the
ground track is shown in gray.
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Figure 3: Feedback-interconnected observer structures. An overview of the two feedback-
interconnected observer structures used for integration of global navigation satellite systems
(GNSS) and the inertial navigation system (INS) is presented. Fig. 3a shows the loosely
coupled INS/GNSS integration. With loosely coupled integration there exists a standalone
GNSS solution used as aiding for estimation of position and velocity. Fig. 3b shows
the tightly coupled INS/GNSS integration. With this integration scheme, the position and
velocity solution is obtained using GNSS pseudorange and Doppler range-rate measurements
in combination with the inertial measurement unit (IMU) readings. With both integration
techniques, the nonlinear attitude observer provides the translational motion observer (TMO)
with the quaternion q̂eb and injection term σ̂, while the TMO provides the attitude observer
with the estimate of the specific force f̂ e.
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Figure 4: Position estimation error. The position errors obtained with the steady-state Kalman
gain are presented with dash lines. The position errors obtained with the translational motion
observer (TMO) applying a time-varying Kalman gain are shown using dash-dot lines. The error
in position obtained when both the TMO and the attitude observer applied time-varying gains is
shown using solid lines. The results indicate that using a TMO with time-varying gains toghter
with an attitude observer prescribed with high initial gains accelerates the convergence of the
position estimates to the true position.
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Figure 5: Velocity estimation error. The velocity errors obtained with the steady-state Kalman
gain are presented with dash lines. The velocity errors obtained with the translational motion
observer (TMO) applying a time-varying Kalman gain are shown using dash-dot lines. The error
in velocity obtained when both the TMO and the attitude observer applied time-varying gains
is shown using solid lines. The results indicate that using a TMO with time-varying gains, with
or without an attitude observer prescribed with high initial gains, accelerates the convergence of
the velocity estimates to the true velocity compared to the fixed-gain solution.
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Figure 6: Attitude estimation error. The attitude error is presented applying Euler angles
as attitude representation. The attitude errors obtained in feedback interconnection with the
translational motion observer (TMO) using a steady-state Kalman gain are presented with dash
lines. The attitude errors obtained in connection with the TMO applying a time-varying Kalman
gain are shown using dash-dot lines. The attitude error obtained when both the TMO and the
attitude observer applied time-varying gains is shown using solid lines. The results indicate that
using a TMO with time-varying gains in feedback interconnection with an attitude observer
prescribed with high initial gains accelerates the convergence of the attitude estimates to the true
attitude.
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Figure 7: Overview of the simulated horizontal unmanned aerial vehicle (UAV) motion. The
motion simulated is a circle with radius of 10 000 meters, where the initial heading of the UAV
was zero. The chosen simulated UAV speed was 25 m/s. The blue circle indicates the UAV
motion, while the red arrows depicts the heading of the UAV at fixed intervals.
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Figure 8: Case 1, position estimation error. The position estimation error obtained in simulation
when applying global navigation satellite systems (GNSS) position measurements containing
colored noise.
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Figure 9: Case 1, global navigation satellite systems (GNSS) error state estimates. The true GNSS
error states (colored noise) are shown in blue, red and yellow, respectively. The corresponding
respective estimates are presented in purple, green and light blue. It can be seen that the
translational motion observer fails in estimating the colored GNSS correctly.
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Figure 10: Case 1, error ellipsis of the north position estimation error and the corresponding
colored noise estimate of the position measurement. The error ellipsis presented shows that the
position estimation error and the colored GNSS noise estimation error are significantly correlated.
This indicate that the translational motion observer struggles to separate the colored noise from
the true position. Similar ellipsis are also obtainable for the East and Down axes.
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Figure 11: Case 2, position estimation error. The position estimation error obtained in simulation
when applying global navigation satellite systems (GNSS) position measurements containing
colored noise together with GNSS velocity measurements containing white noise. The estimation
accuracy is better with velocity measurements corrupted by white noise compared to solely
applying position measurements.
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Figure 12: Case 2, global navigation satellite systems (GNSS) error state estimates. The true
GNSS error states (colored noise), associated with position, are shown in blue, red and yellow,
respectively. The corresponding respective estimates are presented in purple, green and light
blue. It can be seen that the translational motion observer estimates the colored GNSS error
more accurate after the velocity measurements were introduced.
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Figure 13: Case 3, position estimation error. The position estimation error obtained in simulation
when applying global navigation satellite systems (GNSS) position and velocity measurements
containing colored noise. The estimation accuracy is better with velocity measurements compared
to solely applying position measurements, however, still worse than applying a velocity
measurement only corrupted by white noise.
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Figure 14: Case 3, global navigation satellite systems (GNSS) error state estimates. The true
GNSS error states (colored noise), associated with position, are shown in blue, red and yellow,
respectively. The corresponding respective estimates are presented in purple, green and light
blue. It can be seen that the translational motion observer estimates the colored GNSS error
more accurate with velocity measurements than without, however, not as accurate as when the
velocity measurements only were corrupted with white noise.
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Figure 15: Case 3, error ellipsis of the north position and velocity estimation error and the
corresponding colored noise estimate of the position and velocity measurement. The error ellipsis
associated with position is shown in blue, while error ellipsis associated the velocity is shown
red. The error position ellipsis shows that the position estimation error and the colored global
navigation satellite system noise estimation error still are significantly correlated, however, the
correlation is significantly reduced by introducing the velocity measurement. Regarding the
velocity estimation error and the velocity colored noise, the correlation is significantly smaller
the compared to the position equivalent.
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Figure 16: Bode plot. Two bode plots are shown; the transfer function from the IMU noise to
the position estimation error is shown in blue and the transfer function from the driving noise of
the global navigation satellite system (GNSS) error model to the colored GNSS position noise
model output is shown in red. From the two frequency responses, the conclusion is that the
bandwidth of the navigation system is higher than the slowly-varying colored noise component
embedded in the GNSS position measurements. Due to this, the observer struggles to estimate
the GNSS’s colored noise correctly.
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Figure 17: Concept illustration of the ranging done in global navigation satellite systems (GNSS).
The receiver position is denoted pe, while the satellite positions are denoted pei , where i ∈
[1, . . . ,m]. The position of the GNSS receiver may be located anywhere along the circles with
radius yi and origin pei . Because of this, the (pseudo)ranges yi relate to position of the receiver pe

nonlinearly. The figure is a simplification. With pseudoranges yi = %i+β, where %i = ‖pe−pei‖2

are the geometric distances between the receiver and the satellites and β being the receiver’s
clock error multiplied with the speed of light, the nonlinearities become hyperbolic for β > 0,
not circular as indicated.
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The discrete integration/time update is denoted with the integration symbol

∫
and is conducted at

the fastest sampling rate. The dashed lines related to the GNSS velocity measurements represent
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Figure 19: Position estimation error. The results are presented in the Earth-Centered-Earth-Fixed
(ECEF) frame relative the real time kinematic (RTK) global navigation satellite System (GNSS)
positioning solution. The result obtained using loosely coupled integration is shown in blue, the
result obtained using tightly coupled integration is shown in red, while the standalone GNSS
solution is presented in yellow. These results indicate that tightly coupled integration of inertial
and GNSS measurements yield more accurate position estimation compared to loosely coupled
integration and standalone GNSS when applying satellite-based navigation based on the standard
GNSS positioning service.
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Figure 20: Attitude estimation. The results are presented using Euler angles as attitude
representation. The estimate obtained using loosely coupled integration is shown in blue, while
the estimate obtained using tightly coupled integration is shown in red. The standalone GNSS
navigation solution did not provide attitude estimates.
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Figure 21: Gyro bias estimation. The result obtained using loosely coupled integration is shown
with dotted lines, while the result obtained using tightly coupled integration is shown with solid
lines.
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Figure 22: Normalized position error. The results are related to the real time kinematic (RTK)
global navigation satellite system (GNSS) positioning solution between 160 and 162 seconds of
flight. The error relative the RTK solution applying the loosely coupled integration is shown in
blue and the error relative the RTK solution applying the tightly coupled integration is shown
in red, while the error relative RTK using pure GNSS positioning is shown in yellow. The error
relative RTK is smallest applying tightly coupled integration. The error using loosely coupled
integration and pure GNSS is of similar magnitude, however, the integrated solution is smoother
than pure GNSS since inertial data is available between GNSS samples.
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Sidebar 1: Complementary Filtering

The basic concept of complementary filtering is that a set of measurements are low-pass2

filtered, while the remaining measurements are high-pass filtered. Because of this, complementary
filtering is particularly useful for fusing measurements (or information) with complementary4

spectral noise characteristics. Inertial sensors and aiding sensors, such as GNSS, have these
complementary properties. GNSS is then used to capture the low frequency vehicle motion,6

while the inertial sensors are used to capture any high frequency vehicle dynamics. For both
attitude and heading reference systems (AHRS) and complete INS, complementary filtering is8

commonly utilized [3, Ch. 4.10], [11], [17]. The general structure of complementary filter for
INS is illustrated in Fig. S1, while the simplified structure for attitude estimation, also known10

as filtering on SO(3), is presented in Fig. S2.
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Sidebar 2: History of Global Navigation Satellite Systems

The first GNSS service, the Global Positioning System (GPS) was commenced in 19782

with the first prototype satellites and was initially designated to provide the United States’ armed
forces with a global positioning system. After the Korean Air Lines Flight 007 accident west of4

Sakhalin Island in 1983, GPS was authorized for civilian use as well. In 1994 the GPS system
was fully operational with 24 satellites in orbit guaranteeing a world-wide coverage. One year6

later the Russian GLONASS system was fully operational. From 1994 to 2000, the precision
obtained from civilian GPS was in the region of 50 meter accuracy horizontally and 100 meters8

vertically. This artificial degradation of the position precision is known as selective availability
(SA). In 2007 it was announced that the future GPS Block III satellites will be incompatible10

with SA, hence making the termination of SA permanent.

Currently two other global satellite navigation systems are under development. These are12

the Chinese BeiDou Navigation Satellite System and the European Galileo system. For details
on GNSS and radiopositioing in general, see [5, Ch. 8].14
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Sidebar 3: GNSS – Position Calculation and Error Sources

GNSS are ranging systems. The user position is obtained based on multilateration using2

calculated ranges from the satellites in view. The range calculation is done by obtaining the
traveling time of the signal from the satellite to the receiver and multiplying this time with the4

speed of light. Since the range calculation is corrupted by different errors sources, these ranges
are often referred to as pseudoranges. The error sources affecting the position calculation can6

be divided into three main sources;

• satellite errors,8

• signal propagation errors and
• receiver errors.10

The satellite errors can be divided into satellite clock errors and ephemeris data errors.
Propagation errors are due to signal delay in the atmosphere (ionosphere and troposphere).12

Receiver errors mainly consist of noise as a result of thermal noise, signal processing, clock
error and multipath error. Multipath errors are due to GNSS signals reflecting off nearby surfaces14

before arriving at the receiver. In particular multipath and the ionospheric delays contribute to
colored noise being embedded in the receiver’s position calculation. The ephemeris data is16

needed to calculate the user’s position (based on the pseudoranges) since the model is based on
the knowledge of the respective satellites’ positions. Since the clock in GNSS user equipment18

is of low cost, the receiver’s clock error is also estimated. Therefore four or more satellites
in view are required to estimate the position on the Earth in ECEF coordinates (together with20

the receiver’s clock error). The solution is based on linearizing the obtained pseudoranges with
respect to the user’s presumed current position. Usually the position solution is obtained using22

a Least Squares approach or an extended Kalman filter. For more information on GNSS errors
and calculation of position, see [5, Ch. 9], [4, Ch. 6].24
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Sidebar 4: GPS: The First GNSS – Signals and Positioning Services

Currently the civilian GPS system broadcasts on three frequencies 1575.42 MHz, 1227.602

MHz and 1176.45 MHz. The two former is known as the L1 and L2 frequencies, respectively. The
latter is called the L5 frequency. The position measurements is primarily obtained by tracking4

the code(s) of the GPS system modulated on top of carrier wave generated by at each satellite.

The legacy GPS used two codes, namely the; Coarse/acquisition (C/A) and the precise6

code P . The C/A code is modulated on the L1 carrier, while the P code is modulated on both
the L1 and L2 carrier. In 2014, the US Air Force began to broadcast the new civilian L2C and8

L5 signals in test mode from block IIF satellites. The L2C and L5 codes are attended for the
next generation GPS satellites, known as block III. For details related to the GPS signals and10

codes, see [4, Ch. 4.1.]

On average, depending on atmospheric effects, satellite and multipath errors, a ranging error12

of 8-11 meters is obtained using the L1 C/A code to calculate the pseudoranges. A horizontal
position with RMS precision of 3-5 meters can be expected in such cases, depending on receiver14

type. Vertically this can be more than twice that due to the satellite geometry being worse
vertically than horizontally since the Earth blocks the signals that could increase the vertical16

position accuracy. Using the C/A code for positioning is referred to as the standard positioning
service (SPS). With SPS, especially with receiver sampling frequencies faster than 2 Hz, the18

position error is going to be time-correlated. More information on GNSS, and in particular GPS,
can be found in [3, Ch. 8], [4, Ch 1–2], and [5, Ch. 8].20

Atmospheric errors, satellite orbit error or satellite clock offset error are spatially and
temporally correlated. The differential GNSS (DGNSS) approach is based on the assumption that22

two closely spaced receivers tracking the same signals at the same time undergo approximately
the same error. Thus by differencing measurements from two close and synchronized receivers,24

spatially correlated errors can be minimized. In DGNSS, the base station calculates pseudorange
and range rate corrections for each satellite in view that are broadcasted to the user receiver.26

With DGNSS (or DGPS), the 3-5 meters RMS error can be reduced to 1-2 meters by applying
pseudorange and range-rate corrections from the base station before calculating the user’s28

position. Additionally, there exist several satellite-based augmentation systems (SBAS), such as
the US Wide Area Augmentation System (WAAS), European Geostationary Navigation Overlay30

Service (EGNOS) and others, that can also improve GNSS positioning accuracy. If DGNSS is
not sufficient, real time kinematic (RTK) positioning can be applied. RTK approach is based on32

the same principle as DGNSS. The major difference is that this technique also uses carrier-based
ranges for position estimation that provide much higher accuracy than code-based positioning34
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and that the receiver and base station is time synchronized. To take advantage of the precision
of carrier-based measurements, RTK requires raw GNSS measurements to be transmitted from2

the base station to the user. Additionally, a process called ambiguity resolution is required to
determine the initial integer number of whole cycles. The RTK approach is capable of providing4

positioning accuracy on a centimeter level if the integer ambiguities are successfully resolved.
For more information on DGNSS and RTK, [3, Ch. 8.8], [4, Ch. 8], and [5, Ch. 10], can be6

advised.

GNSS velocity measurements may be obtained based on differences of the position8

solution. This however has become a dated technique for determining the velocity of a craft
exposed to medium and high dynamics. The user’s velocity can be obtained from the receiver’s10

internal EKF. Using Doppler observables, in addition to the pseudoranges, further improves the
velocity precision and accuracy. Doppler-based velocity determination is inherently more accurate12

and yields a much faster response to user dynamics than position differences, [4, Ch. 6.4.5]. When
using Doppler measurements, a velocity RMS error of 0.1-1 m/s can be expected depending on14

conditions (obstructions, satellite geometry, etc.). Although the Doppler-based velocity solution
is accurate, it is not without some dynamics since the measured Doppler shift is not a raw16

measurement, but derived as the deviation from the nominal carrier frequency. Therefore, the
Doppler shift is a function of the user’s velocity, the satellite velocity, the line-of-sight (LOS)18

vector to the satellite (derived using the pseudorange measurements and the satellites’ positions),
the carrier wave length and the receiver’s clock frequency, [4, Ch. 6.3.3 & Ch. 6.4.5]. Due to the20

low-cost clocks in GNSS user equipment, the clock error (β is this article) is not constant since
the clock’s oscillator frequency is not constant. The LOS vector from satellite to receiver also22

is affected by time-correlated pseudorange noise. An alternative way to measure the Doppler
shift is to count the cycles of the carrier in the receiver over a shorter time window (1s or24

less is common). In either case, the Doppler shift is obtained based on the assumption that the
receiver’s clock frequency has no error. Hence, the velocity error is going to contain colored26

noise components. For more information on the Doppler range-rate measurement, [4, Ch. 6.4.5]
and [5, Ch 9.2.7], can be advised.28
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Sidebar 5: Inertial Measurement Units

An inertial measurement unit (IMU) is a sensor providing measurements of angular rate2

and specific force in three axes. The angular rates, measured in the BODY frame, are relative
the inertial frame,4

ωbIMU = ωbib + bbg + εg, (S1)

whilst the specific force is measured as the sensor’s acceleration minus the gravity,

f bIMU = abib − (Re
b)

ᵀge(pe) + bbf + εf , (S2)

where Rb
e is the rotation matrix from BODY to the ECEF frame. The bb∗ and ε∗ terms in (S1)–6

(S2) represents sensor biases and sensor noise. The magnitude of these error sources are affected
by the underlying sensor technology. The main IMU technologies are summarized in Table S1.8

For further details on IMUs and inertial sensor technology, see [2] and [4].

An increasingly popular type of IMUs are units based on micro-electro-mechanical-systems10

(MEMS) technology. These are small and lightweight, with a reasonable measurement quality,
providing the user with a cost-effective solution.12

Some IMUs have embedded magnetometers and a barometer, enabling the user to obtain
additional information related to the vehicle’s heading and altitude, in a single unit. An alternative14

source of heading determination is based on mechanical gyroscopic technology, known as a
mechanical gyrocompass. This is a mechanical unit which orientation is fixed in space such that16

the vehicle’s attitude is obtained by reading the unit’s angles relative its mounting frame.
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Sidebar 6: Algorithm 1
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Algorithm 1 Discrete-time attitude observer in direct form.
Require: Initializing the observer,
1: q̂eb [0] = q0(φ[0], θ[0], ψ[0]), b̂bg = 03×1, where q0 is the mapping from the initial Euler angles φ[0], θ[0], ψ[0].
2: Enforcing ‖q̂eb [0]‖ = 1, using q̂eb [0] = q̂eb [0]/‖q̂eb [0]‖ .
3: Extracting sq [0] and rq [0] from q̂eb [0] and calculating the initial rotation matrix

R(q̂eb [0]) = I3 + 2sq [0]S(rq [0]) + 2S(rq [0])2 (S3)

Iteration: k
4: Get f̂e[k] from the TMO,
5: Get fbIMU[k], ωbIMU[k] from the IMU and performing vector calculations,

fb = fbIMU[k]/‖fbIMU[k]‖, v1
b[k] = fb, (S4)

fe = satMf
(f̂e[k])/‖satMf

(f̂e[k])‖, v1
e[k] = fe, (S5)

σ̂1[k] =
δtacc

T
k1[k]v1

b[k]×R(q̂eb [k − 1])ᵀv1
e[k], (S6)

6: if new magnetometer measurement is available then
7: Get mbmag[k] from the magnetometer and performing vector calculations,

mb = mbmag[k]/‖fbmag[k]‖, v2
b[k] = fb ×mb (S7)

me = me/‖me‖, v2
e[k] = fe ×me (S8)

σ̂2[k] =
δtmag

T
k2[k]v2

b[k]×R(q̂eb [k − 1])ᵀv2
e[k], (S9)

8: else
9: σ̂2[k] = 03×1

10: end if
11: Calculating the aggregated injection term, σ̂[k] = σ̂1[k] + σ̂2[k].
12: Calculating intermediate variables,

ω̂[k] = ωbIMU[k]− b̂bg [k − 1] + σ̂[k], (S10)

Ω (ω̂[k]) =

(
0 −ω̂ᵀ[k]

ω̂[k] −S(ω̂[k])

)
, Ω̄(ωeie) =

(
0 −(ωeie)

ᵀ

ωeie S(ωeie)

)
, (S11)

e(T
2

Ω(ω̂[k])) = cos

(
T

2
‖ω̂[k]‖2

)
I4 +

T

2
sinc

(
T

2
‖ω̂[k]‖2

)
Ω(ω̂[k]), (S12)

e(−T
2

Ω̄(ωe
ie)) =

(
cos

(
T

2
‖ωeie‖2

)
I4 +

T

2
sinc

(
T

2
‖ωeie‖2

)
Ω̄(ωeie)

)−1

. (S13)

13: Updating attitude estimate,

q̂eb [k] = e(T
2

Ω(ω̂[k]))e(−T
2

Ω̄(ωe
ie))q̂eb [k − 1]. (S14)

14: Carry out gyro bias projection and update gyro bias estimate,

b̂bg [k] = b̂bg [k − 1]− TkI [k]σ̂[k]. (S15)

15: Enforcing unit quaternion constraint, q̂eb [k] = q̂eb [k]/‖q̂eb [k]‖,
16: Extracting sq [k] and rq [k] from q̂eb [k] and calculating the rotation matrix

R(q̂eb [k]) = I3 + 2sq [k]S(rq [k]) + 2S2(rq [k]) (S16)

and providing R(q̂eb [k]) to the TMO.
17: k ← k + 1.
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Sidebar 7: Algorithm 2
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Algorithm 2 Discrete-time realization of the TMO in direct form.
Require: Initializing the observer.
1: p̂e[0] = p0(µ(0), l(0), h(0)) ∈ R3, v̂e[0] = v0 ∈ R3, ξ(0) = 03×1, where p0 is the initial position obtained

from them initial latitude µ(0), longitude l[0] and height over the WGS-84 ellipsis h[0] (height over the mean
sea level, approximately). v0 is the initial velocity.

2: x−[0]← (p̂e; v̂e; ξ).
Iteration: k,
3: if new GNSS measurement is available then
4: if tightly coupled integration then
5: update C[k] matrix based on current satellites in line-of-sight
6: end if
7: Correction is applied,

Kd[k] = P−[k]C[k]ᵀ(C[k]P−[k]Cᵀ[k] +R[k])−1, (S17)

x+[k] = x−[k] +Kd[k]
(
y[k]− C[k]x−[k]

)
, (S18)

P+[k] = (I9+l −Kd[k]C[k])P
−[k]. (S19)

8: else

x+[k] = x−[k] (S20)

P+[k] = P−[k] (S21)

9: end if
10: Calculating

p̂e[k] = x+(1 : 3)[k], (S22)

v̂e[k] = x+(4 : 6)[k], (S23)

ξ[k] = x+(7 : 9)[k], (S24)

f̂e[k] = R(q̂eb [k])f
b
IMU[k] + ξ[k] (S25)

and providing f̂e[k] to the attitude observer.
11: Get R(q̂eb [k]), σ̂[k] from the attitude observer,
12: Get f bIMU[k] from the IMU,
13: Update Ad[k], Bd,1[k], Bd[k], Dd[k], u∗[k].
14: Propagation in time,

x−[k + 1] = Ad[k]x
+[k] +Bd,1[k]u

∗[k] +Dd[k], (S26)

P−[k + 1] = Ad[k]P
+[k]Aᵀ

d [k] +Bd[k]Qd[k]B
ᵀ
d [k]. (S27)

15: Enforcing symmetry of P−[k + 1],

P−[k + 1] =
1

2

(
P−[k + 1] +

(
P−)ᵀ[k + 1]

)
. (S28)

16: k ← k + 1.
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TABLE S1: IMU and Inertial Sensor Technology

Angular rate/Gyro Accelerometer
Momentum wheel (used for instance in
gyrocompassing)

Gyroscopic (mass displacement
detection)

Optical (based on laser or fiber optic technology) Pendulous (mechanical)
Coriolis/vibratory gyros (MEMS) Vibratory accelerometers (MEMS)
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Figure S1: Traditional complementary filtering using the Kalman filter. The structure is also
known as error-state or indirect Kalman filtering. The Kalman filter estimates the error between
the inertial navigation system (INS) and low rate aiding sensor. For low frequencies, the aiding
sensor is the dominating information sensor for the INS output. For high frequencies the high-
frequency input from the inertial sensor is the dominating information source in producing the
INS output.
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Figure S2: Simplified concept of complementary filtering on SO(3). Some reconstructed attitude
measurement Ry ≈ R is valid for low frequencies. For frequencies lower than the cut-off
frequency k, Ry is the dominating information used to calculate R̂. For high-frequencies ωbIMU

is the dominating factor. By using complementary filtering on SO(3), the effect of the low-
frequency gyro bias on the attitude estimate is attenuated.
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