
Tightly Coupled Integrated Inertial and Real-Time-Kinematic
Positioning Approach Using Nonlinear Observer

Jakob M. Hansen1, Tor Arne Johansen1 and Thor I. Fossen1

Abstract— Tightly coupled integration of inertial measure-
ments and raw global navigation satellite measurements using
a nonlinear observer is proposed for real-time-kinematic ap-
plications. The position, linear velocity and attitude estimates
of a rover is aided by global pseudo-range and carrier-phase
measurements from the rover and a base station. The tight
integration is achieved using a modular observer design, where
the attitude observer with gyro bias estimate is based on
a nonlinear complementary filter. Two translational motion
observers estimating position and linear velocity using single-
or double-differenced range measurements, respectively, are
presented. The range measurements include pseudo-range and
carrier-phase measurements from the satellite constellation to
rover and base station, where the integer ambiguity resolution
is estimated as part of the nonlinear observer state vector. The
feedback interconnection of the observer systems is shown to
be exponentially stable. The proposed observers are tested with
an unmanned aerial vehicle simulator.

I. INTRODUCTION

Vehicle navigation is often based on data from Inertial
Measurement Units (IMUs) supplying inertial information
such as acceleration and angular velocity of the vehicle.
Integration of the measurements allows for estimation of
position, linear velocity and attitude of the vehicle, which
can be further enhanced by use of aiding sensors, e.g.
a magnetometer or a Global Navigation Satellite System
(GNSS) receiver.

One method for INS/GNSS integration is the loosely
coupled architecture, where a kinematic model is used to
integrate INS to position while correcting it with GNSS
position data. Another approach is the tightly coupled ar-
chitecture where range measurements from a GNSS system
is used instead of position estimates for aiding. The primary
difference between the loosely and tightly coupled systems is
that the GNSS measurements are moved from the position-
domain to the range-domain, see [1].

The accuracy of GNSS measurements suffer from signal
disturbances e.g. in the ionosphere and troposphere where
the signal path can be obstructed due to shifts in magnetic
field or atmospheric density. These disturbances can, to
some extend, be modeled based on local and solar weather
forecasts. Using multi-frequency receivers it is possible to
estimate and compensate for ionospheric delay, section 8.6
in [2], however these receivers are presently not widely used
due to their high price. Another approach for countering
the atmospheric disturbances is to utilize a dual receiver
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configuration, where two receivers are placed close to each
other obtaining GNSS measurements from the same satellite
constellation. In this case environmental disturbances are
considered to be the same for the two receivers. With a
known position of the reference receiver, often called base
station, and a short baseline to the rover (vehicle) the signal
disturbances can be canceled.

Using the raw measurements from the satellite receiver, i.e.
carrier-phase, pseudo-range or Doppler frequency measure-
ments, tight integration with the inertial measurements allow
for an increase in precision, e.g. [1]. Multiple approaches for
tight integration using Kalman filters have been proposed.
Potential enhancements for tightly coupled integration on
small unmanned aerial vehicles (UAVs) are listed in [3]. A
Kalman filter method using GPS velocity estimates instead
of carrier-phase measurements is proposed in [4]. An ex-
tended Kalman filter integrating pseudo-ranges and Doppler
measurements with a low-cost inertial sensor is proposed
in [5] for assisting the phase-lock-loop tracking. [6] use
time-differenced carrier-phase measurements to eliminate the
ambiguities. The time-differenced approach was also applied
in [7] where an attitude determination system was designed
using a Kalman filter and a single-receiver configuration. In
[8] the advantages of augmenting precise point positioning
with inertial measurements in a dual-frequency receiver
configuration is investigated. The Kalman filter is based on
linear approximation of the nonlinear measurement model,
where a need for higher order accuracy was investigated in
[9], but found to be negligible for tightly coupled systems.
A comparative study of loosely, tightly and ultra-tightly
coupled systems was investigated by [10] using a wide range
of inertial sensor grades, and the GIGET tool. A tightly
coupled system utilizing a GPS compass for effective integer
ambiguity search was investigated by [11], using a low-cost
multi-antenna setup. In [12] a new and faster method for
integer ambiguity resolution is proposed, which is confirmed
with experimental measurements.

Integration of inertial measurements and global position
measurements have been researched extensively, tradition-
ally in filters as the extended Kalman filter [1], [2], and
recently with nonlinear observers [13], [14]. The advan-
tages of the nonlinear observers compared to the widely
used extended Kalman filter are the reduced computational
workload, proven stability qualities and reduced need for
linearization of the system model. An advantage of using
raw satellite measurements is that the solution is no longer
dependent of the unknown properties of the Kalman filter in
the GNSS receiver supplying position estimates.
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The main contributions of the present paper are two non-
linear translational motion observers utilizing as injection the
error between measured and estimated single- and double-
differenced range measurements from the satellite constel-
lation to rover and base station. For the single-differenced
method the receiver clock error needs to be estimated,
whereas this term is canceled for the double-differenced
approach. Where various Kalman filters for tightly coupled
integration have been put forward, and several nonlinear
observers have been proposed for loosely coupled GNSS/INS
integration, tight integration using nonlinear observers has
only recently been proposed, [15] and [16], [17], [18], [19].
The motivation is reduced computational load and more
transparent conditions for stability and region of attraction.

The problem will be stated formally in Section II, followed
by the Real-Time-Kinematic (RTK) positioning approach in
Section III, introducing the raw GNSS measurements. In
Section IV and V the nonlinear observers will be introduced,
while Section VI presents the method used for integer
ambiguity resolution. In Section VII some implementation
and time scale considerations are presented. A case study is
conducted in Section VIII presenting data from a simulated
unmanned aerial vehicle (UAV). The paper is concluded in
Section IX.

II. PROBLEM STATEMENT

The objective of this paper is to estimate position, linear
velocity and attitude (PVA) of a vehicle by tightly coupled
integration of inertial measurements in the Body frame
aided by range measurements from satellites. The satel-
lite measurements include pseudo-range and carrier-phase
measurements, obtained from the satellite broadcasts. The
nonlinear observer is based on [15], with several extensions
such that the position estimate is computed as a moving-
baseline RTK solution with fixed or real valued integer
ambiguities and known base station position. The raw satel-
lite signal measurements are obtained at two locations: a
stationary (or slightly moving) base station and a moving
rover. Estimation of the rover PVA as well as the baseline,
i.e. the vector (displacement) between rover and base station,
are of interest. The coordinate frames used will be denoted
with b for Body-frame and e for Earth-Centered-Earth-Fixed-
frame. Here the rover and base station will be signified by
the indicators r and s, respectively.

The kinematic model of the rover and base station are
described by:

ṗe
r = ve

r , (1)
v̇e

r =−2S(ωe
ie)v

e
r + f e +ge(pe

r), (2)

q̇e
b =

1
2

qe
b⊗ ω̄

b
ib−

1
2

ω̄
e
ie⊗qe

b, (3)

ḃb = 0, (4)
ṗe

s = 0, (5)

where pe
r , ve

r and qe
b denote the position, linear velocity

and attitude of the rover, with the attitude represented as a
unit quaternion expressed in the Earth-Centered-Earth-Fixed
(ECEF) frame. The base station position, pe

s , is assumed to

be constant (or, in practice slowly time-varying). The specific
force is denoted f e, while the gravitational vector, ge, is
a function of the rover position. The angular velocity and
associated rate gyro bias are denoted; ωb

ib and bb, expressed
in the Body-frame, while the angular velocity of the Earth
with respect to the Earth-Centered Inertial (ECI) frame is
denoted ωe

ie. The skew-symmetric matrix of a vector is
denoted S(·) (see (B.14)–(B.15) [2]), while the Hamilton
quaternion product is denoted ⊗. A real valued vector,
x ∈R3, can be expressed as a quaternion with zero real part
denoted as x̄ = [0;x].

A. Measurement Assumptions

Determining the position of a vehicle using RTK requires
two receivers, separated by a baseline. The RTK principle
is based on the assumption that the ionospheric and tro-
pospheric disturbances for the two receivers are identical,
thereby making it possible to cancel them out by sharing the
obtained satellite data between the two receivers.

In the literature the carrier-phase measurements can be
found with unit of meters or cycles. In the following ϕ will
denote the carrier-phase measurement in meters, with ϕ =
λϕcycles being the conversion from cycles to meters, where
λ is the wavelength of the signal.

The range measurements from the ith satellite are:

ρ
r
i = ψ

r
i +β

r + ε
r
i , (6)

ϕ
r
i = ψ

r
i +Nr

i λ +β
r + er

i , (7)

where ψr
i is the geometric range from the ith satellite to

the rover, i.e. ψr
i = ‖pe

r− pe
i ‖2. Nr

i is the integer ambiguity,
β r is the receiver clock range error, er

i and εr
i are covering

systematic environmental errors arising from the ionosphere
and troposphere. The receiver clock range error is expressed
as, β := c∆c, with c being the wave propagation speed and ∆c
being the clock bias, between satellite and receiver clocks. In
addition, there are smaller errors such as receiver noise that is
not explicitly included. When expressing the measurements
at the base station the superscript r is substituted for s.

The environmental disturbances are the same for the base
station and rover receiver, er

i = es
i = ei and εr

i = εs
i = εi,

where the subscript denotes measurements from the ith
satellite. Effectively this requires the baseline between the
two antennas to be less than 20 km, [1].

The following sensor measurements are assumed available
from the rover:

• Specific force as measured by an IMU, f b
IMU = f b.

• Angular velocity with bias as measured by an IMU,
ωb

ib,IMU = ωb
ib +bb.

• Magnetic field measurements from a magnetometer, mb.
• Pseudo-ranges measurements from satellites, ρr

i .
• Carrier-phase measurements from satellites, ϕr

i .

Furthermore, it is assumed that pseudo-range, ρs
i , and carrier-

phase, ϕs
i , measurements are available at the base station.

There should be m ≥ 5 common satellites available in the
two constellations.
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The satellite positions are assumed known, which can be
satisfied by obtaining the transmitted ephemeris data from
each satellite.

The method can be easily extended to exploit range-rate
(Doppler) measurements, which are not included here for
simplicity.

III. REAL-TIME-KINEMATICS POSITIONING

The single-differenced measurements between the rover
and base station from the ith satellite can eliminate the
common environmental errors:

∆ρi = ∆ψi +∆β , (8)
∆ϕi = ∆ψi +∆Niλ +∆β , (9)

where ∆ρi := ρr
i − ρs

i , ∆ϕi := ϕr
i − ϕs

i , ∆N := Nr
i −Ns

i =
[∆N1,∆N2, . . . ,∆Nm], ∆β := β r−β s, and ∆ψi := ψr

i −ψs
i is

the geometric baseline between rover and base station.
Elimination of the clock error ∆β can be achieved by

double-differencing the measurements using an additional
satellite j at the same epoch:

∇∆ρi j = ∇∆ψi j, (10)
∇∆ϕi j = ∇∆ψi j +∇∆Ni jλ , (11)

where ∇∆ρi j := ∆ρ j−∆ρi, ∇∆ψi j := ∆ψ j−∆ψi, ∇∆ϕi j :=
∆ϕ j − ∆ϕi, and ∇∆Ni j := ∆N j − ∆Ni. It is vital that the
measurements from the two satellites at the two receivers are
simultaneous. If this is not the case the geometric distance
between satellite and receiver will have changed between
the measurements making the differential measurements in-
accurate. The receivers are assumed to log and time stamp
the raw measurements simultaneously for all satellites in the
constellation with a fixed update rate of 1−10 Hz. Moreover,
it is assumed that coinciding measurements can be found for
the two satellites at the two receivers.

In the following sections two nonlinear observers will
be introduced, based on the single- and double-differenced
measurements. The nonlinear observer design consists of
two parts: an attitude observer and a translational motion
observer.

IV. NONLINEAR OBSERVER - SINGLE-DIFFERENCED

Estimating the rover attitude represented as the rotation
between ECEF- and Body-frame as well as the gyro bias
is achieved by the nonlinear attitude observer given in [20],
[15], [21]:

˙̂qe
b =

1
2

q̂e
b⊗
(

ω̄
b
ib,IMU −

¯̂bb + ¯̂σ
)
− 1

2
ω̄

e
ie⊗ q̂e

b, (12)

˙̂bb = Proj(−kIσ̂ ,‖b̂b‖2 ≤Mb̂), (13)

σ̂ = k1vb
1×R(q̂e

b)
T ve

1 + k2vb
2×R(q̂e

b)
T ve

2, (14)

where Proj(·, ·) is the projection function limiting the
estimate to a sphere with constant radius Mb̂. The magnetic
field of the Earth is denoted me, while k1, k2 and kI are
positive constants chosen sufficiently large. The vectors vb

1
and vb

2 are two vectors in the Body-frame with corresponding

vectors ve
1 and ve

2 in the ECEF-frame. The vectors can be
considered in various forms, but will here be:

vb
1 =

f b
IMU

‖ f b
IMU‖2

,vb
2 =

mb

‖mb‖2
× vb

1,

ve
1 =

f̂ e

‖ f̂ e‖2
,ve

2 =
me

‖me‖2
× ve

1.

The specific force estimate is supplied by the translational
motion observer, inspired by [15]:

˙̂pe
r = v̂e

r +
m

∑
i=1

(
K pρ

i eρ,i +K pϕ

i eϕ,i
)
, (15)

˙̂ve
r =−2S(ωe

ie)v̂
e
r + f̂ e +ge(p̂e

r)

+
m

∑
i=1

(
Kvρ

i eρ,i +Kvϕ

i eϕ,i
)
,

(16)

ξ̇ =−R(q̂e
b)S(σ̂) f b

IMU +
m

∑
i=1

(
Kξ ρ

i eρ,i +Kξ ϕ

i eϕ,i

)
, (17)

f̂ e = R(q̂e
b) f b

IMU +ξ , (18)

˙̂ps =
m

∑
i=1

(
Ksρ

i eρ,i +Ksϕ

i eϕ,i
)
, (19)

∆
˙̂
β =

m

∑
i=1

(
Kβρ

i eρ,i +Kβϕ

i eϕ,i

)
, (20)

∆
˙̂N =

m

∑
i=1

(
KNρ

i eρ,i +KNϕ

i eϕ,i

)
. (21)

The clock error, ∆β , is assumed to be the same for all
satellites, i.e. ∆β̂ ∈ R1. The receiver errors are assumed to
dominate the clock range error diminishing the need for
individual estimation for each satellite.

The single-differenced ambiguities, ∆N̂, are initially
treated as real valued when estimated in (21), where Section
VI will describe how the estimates are fixed to integer
values for increased precision. The observer structure is
similar to [15], with altered injection terms and addition of
base station position and integer ambiguity estimation. The
injection terms are the errors in single-differenced pseudo-
range and carrier-phase, defined as: eρ,i := ∆ρi − ∆ρ̂i and
eϕ,i := ∆ϕi−∆ϕ̂i. The estimated terms are determined as:

∆ρ̂i = ∆ψ̂i +∆β̂ , ∆ϕ̂i = ∆ψ̂i +∆N̂iλ +∆β̂ , (22)

where the geometric range difference estimate is:

∆ψ̂i = ‖ p̂e
r− pe

i ‖2−‖ p̂e
s− pe

i ‖2.

The measurement errors can be expressed as:

eρ,i = ‖pe
r− pe

i ‖2−‖ p̂e
r− pe

i ‖2−‖pe
s− pe

i ‖2

+‖p̂e
s− pe

i ‖2 +∆β̃ ,
(23)

eϕ,i = eρ,i +∆Ñiλ . (24)

The state estimation error vector is introduced as, x̃ =
[p̃r, ṽr, f̃ , p̃s,∆β̃ ,∆Ñ]T , with p̃r := pe

r − p̂e
r , ṽr := ve

r − v̂e
r ,

f̃ := f e− f̂ e, p̃s := pe
s− p̂e

s , ∆β̃ :=∆β−∆β̂ , ∆Ñ :=∆N−∆N̂,
where ξ is replaced with f̃ by combination of (17) and (18).
The measurement errors are linearized leaving:

eρ,i =Cρ,ix̃+h.o.t., (25)
eϕ,i =Cϕ,ix̃+h.o.t., (26)
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where the higher order terms (h.o.t.) are neglected in
the observer gain selection, [15]. The measurement matri-
ces are given by their rows Cρ,i = [ci,0,0, c̆i,1,0m], and
Cϕ,i = [ci,0,0, c̆i,1,λ1i,m] for i = 1,2, . . . ,m, with 1i,m =
[0, . . . ,1, . . . ,0] having a non-zero ith element, and ci and
c̆i defined in Appendix A:

ci =
p̂e

r− pe
i

‖p̂e
r− pe

i ‖2
, c̆i =−

p̂e
s− pe

i
‖ p̂e

s− pe
i ‖2

, (27)

The error dynamics can be expressed as, [14], [15]:
˙̃x = (A−KC) x̃+θ1(t, x̃)+θ2(t,χ)+θ3(t, x̃), (28)

where θ1(t, x̃) := [0,θ12(t, x̃),0,0,0] with θ12(t, x̃) =
−S(ωe

iex̃2 +(ge(pe
r)− ge(pe

r − x̃1)) and θ2(t,χ) as given in
[14] where it was shown that ‖θ2(t,χ)‖2 ≤ γ3‖χ‖2 for some
positive constant γ3. Here χ is the combined variable χ :=
[r;b] consisting of the vector part of the quaternion, r, and
the gyro bias. The last term in (28) is defined as θ3(t, x̃) =
λK[0;∆Ñ] + h.o.t.. The time-varying observer gains of the
translational motion observer, K∗i , must satisfy A−KC being
stable where:

A =


0 I3 0 0 0 0
0 0 I3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,K =



K pρ

1 . . . K pρ
m K pϕ

1 . . . K pϕ
m

Kvρ

1 . . . Kvρ
m Kvϕ

1 . . . Kvϕ
m

Kξ ρ

1 . . . Kξ ρ
m Kξ ϕ

1 . . . Kξ ϕ
m

Ksρ

1 . . . Ksρ
m Ksϕ

1 . . . Ksϕ
m

Kβρ

1 . . . Kβρ
m Kβϕ

1 . . . Kβϕ
m

KNρ

1 . . . KNρ
m KNϕ

1 . . . KNϕ
m


and C is a time-varying matrix with 2m rows; C :=

[Cρ,1; . . . ;Cρ,m;Cϕ,1; . . . ;Cϕ,m]. It should be noted that the
constellation and number of available satellites can change
with every epoch.

Observability of the system (28) is ensured with a suffi-
cient number of satellites, and the vectors ve

1 and ve
2 not being

co-linear. An accurate initialization procedure is proposed in
[15]. As shown in [15] this leads to exponential stability
with semi-global region of attraction with respect to attitude
initialization error when K is the gain matrix and P the
covariance matrix determined by solving the time-varying
Riccati equation, see Section VII.

V. NONLINEAR OBSERVER - DOUBLE-DIFFERENCED

An alternative observer is proposed based on the same ob-
server structure as the single-differenced observer in Section
IV, using double-differenced measurements. One advantage
is that the estimation of the clock error is no longer required,
making the state vector smaller compared to the single-
differenced observer. With the attitude observer described
by (12)–(14) as before, the double-differenced translational
motion observer is proposed as:

˙̂pe
r = v̂e

r +
m−1

∑
j=1

(
K pρ

j eρ,m j +K pϕ

j eϕ,m j

)
, (29)

˙̂ve
r =−2S(ωe

ie)v̂
e
r + f̂ e +ge(p̂e

r)

+
m−1

∑
j=1

(
Kvρ

j eρ,m j +Kvϕ

j eϕ,m j

)
,

(30)

ξ̇ =−R(q̂e
b)S(σ̂) f b

IMU

+
m−1

∑
j=1

(
Kξ ρ

j eρ,m j +Kξ ϕ

j eϕ,m j

)
,

(31)

f̂ e = R(q̂e
b) f b

IMU +ξ , (32)

˙̂pe
s =

m−1

∑
j=1

(
Ksρ

j eρ,m j +Ksϕ

j eϕ,m j

)
, (33)

∇∆
˙̂N =

m−1

∑
j=1

(
KN p

j eρ,m j +KNϕ

j eφ ,m j

)
. (34)

The double-differenced integer ambiguities comprises a
vector one element smaller than the single-differenced am-
biguity vector, and will initially be treated as real valued,
i.e. ∇∆N̂ ∈ Rm−1. The injection terms are the errors in
double-differenced pseudo-range and carrier-phase, defined
as: eρ,m j := ∇∆ρm j−∇∆ρ̂m j and eϕ,m j := ∇∆ϕm j−∇∆ϕ̂m j.
The estimated terms are determined as:

∇∆ρ̂m j = ∇∆ψ̂m j, ∇∆ϕ̂m j = ∇∆ψ̂m j +∇∆N̂m jλ , (35)

with the double-differenced geometric range, ∇∆ψ̂m j, being:

∇∆ψ̂m j = ‖p̂e
r− pe

j‖2−‖ p̂e
r− pe

m‖2−‖ p̂e
s− pe

j‖2

+‖p̂e
s− pe

m‖2.

The injection terms can be expressed as:

eρ,m j = ‖pe
r− pe

j‖2−‖pe
r− pe

m‖2−‖pe
s− pe

j‖2 +‖pe
s− pe

m‖2

−‖ p̂e
r− pe

j‖2 +‖ p̂e
r− pe

m‖2 +‖p̂e
s− pe

j‖2−‖ p̂e
s− pe

m‖2,

eϕ,m j = eρ,m j +∇∆Ñm jλ .

Defining the state vector x̃ := [p̃r, ṽr, f̃ , p̃s,∇∆Ñ]T , with
∇∆Ñm j := ∇∆Nm j − ∇∆N̂m j and state substitution as for
the single-differenced observer. The linearized measurement
errors are:

eρ,m j =Cρ,m j x̃+h.o.t., (36)
eϕ,m j =Cϕ,m j x̃+h.o.t., (37)

where Cρ,m j = [cm j,0,0, c̆m j,0] and Cϕ,m j =
[cm j,0,0, c̆m j,λ1 j,m−1], see Appendix B:

cm j =
p̂e

r− pe
j

‖ p̂e
r− pe

j‖2
− p̂e

r− pe
m

‖p̂e
r− pe

m‖2
,

c̆m j =−
p̂e

s− pe
j

‖ p̂e
s− pe

j‖2
+

p̂e
s− pe

m

‖p̂e
s− pe

m‖2
.

The error dynamics for the double-differenced approach is:

˙̃x = (A−KC) x̃+θ1(t, x̃)+θ2(t,χ)+θ3(t, x̃), (38)

where the perturbation terms are defined as for the single-
differenced case, with the exclusion of the rows for the ∆β̃

state. The time-varying observer gains of the translational
motion observer, K∗j , must satisfy A − KC being stable
where:

A =


0 I3 0 0 0
0 0 I3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,K =


K pρ

1 . . . K pρ

m−1 K pϕ

1 . . . K pϕ

m−1
Kvρ

1 . . . Kvρ

m−1 Kvϕ

1 . . . Kvϕ

m−1

Kξ ρ

1 . . . Kξ ρ

m−1 Kξ ϕ

1 . . . Kξ ϕ

m−1
Ksρ

1 . . . Ksρ

m−1 Ksϕ

1 . . . Ksϕ

m−1
KNρ

1 . . . KNρ

m−1 KNϕ

1 . . . KNϕ

m−1


and C is a time-varying matrix with 2m− 2 rows; C :=
[Cρ,m,1; . . . ;Cρ,m,m−1;Cϕ,m,1; . . . ;Cϕ,m,m−1]. The gain and co-
variance matrix are found from the time-varying Riccati
equation, see Section VII. Following the results of [15] the
equilibrium point of the observer is exponentially stable with
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a semi-global region of attraction with respect to attitude
initialization error. The observer can be initialized with the
procedure proposed in [15].

VI. INTEGER AMBIGUITY

The two proposed observers treat the ambiguity estimates
as real valued, ∆N̂i and ∇∆N̂i j, which can be improved upon
by fixing the ambiguities to integers. Fixing the ambiguities
can be done in several ways, here the focus will be on the
"Fix and hold" method, [1].

The ambiguity resolution approach requires at least five
satellites to be tracked simultaneous by the rover and base
station, i.e. m≥ 5. The ambiguities are considered as a com-
bined variable, e.g. ∆N̂ :=

[
∆N̂1;∆N̂2; . . . ;∆N̂m

]
expressing

the ambiguity vector.
The initial ambiguity vector estimates for the single-

and double-differenced observers can be determined from
subtraction of (8)–(9) and (10)–(11):

∆N̂ =
1
λ
(∆ϕ−∆ρ) , (39a)

∇∆N̂ =
1
λ
(∇∆ϕ−∇∆ρ) , (39b)

where ∆ϕ , ∆ρ , ∇∆ϕ and ∇∆ρ are combined variables of
the single- and double-differenced range measurements.

These equations can be used for estimating the ambiguities
by averaging over the differences for each epoch over a
period of time. The drawback is extended initial computation
time for ambiguity estimation. Here (39) will be used as an
initial estimate of the ambiguities, determined for every new
satellite in the constellation. The initialization should also be
used if a satellite is re-introduced to the constellation after a
period of blockage or loss of lock.

The observer will estimate the real-valued ambiguities as
part of the state vector, updating the estimates with every
epoch. The real valued estimates can then be tested for
convergence to an integer value by searching through integer
sets to minimize, [1] (here shown for the double-differenced
observer):

s2
N =

(
∇∆N̄−∇∆N̂

)T P−1
N
(
∇∆N̄−∇∆N̂

)
, (40)

where ∇∆N̄ is a vector of candidate integer values, and the
ambiguity error covariance matrix is denoted PN > 0. The
search space of the integers, ∇∆N̄, is determined as:

S :=
{

∇∆N̄ ∈ Zm−1|∇∆N̂− crσN ≤ ∇∆N̄ ≤ ∇∆N̂ + crσN
}
,

where σN is the variance of the integer estimates determined
as the square root of the diagonal elements of PN , i.e.
σN =

√
diag(PN). The constant cr denotes the size of the

confidence interval, where in the following, assuming normal
distribution, cr := 3.29 for 99.9% confidence interval.

After evaluation of (40) the smallest and second smallest
value of s2

N,i, respectively called Ω1 and Ω2 are used to
test if a candidate set is sufficiently close to the estimated
ambiguities. This is done by testing whether Ω1 is far enough
from other solutions to make it stand out:

Ω2Ω
−1
1 ≥ tN

If the ratio is greater than some threshold, the test
is accepted and the integer candidate corresponding to

Ω1 is chosen as the fixed ambiguity estimate, ∇∆Ň :=[
∇∆Ňm,1;∇∆Ňm,2; . . . ;∇∆Ňm,m−1

]
. This test is performed for

every epoch and will use all the present ambiguities in
the decision. It is therefore not possible to fit part of the
ambiguity vector to integer value and leaving some as real-
valued.

Since the search space for the integer ambiguity resolution
initially will be too large to be computationally feasible, the
integer evaluation will only be carried out when the search
space is smaller than some limit, e.g. 100 000 possibilities,
which is determined by σN .

VII. IMPLEMENTATION CONSIDERATIONS

The translational motion observers are discretized using
the Corrector-Predictor method presented in [22], where the
observer is divided into a linear corrector part consisting
of the injection terms and a nonlinear predictor part. The
predictor part is implemented at IMU sampling frequency
predicting the states between satellite measurements, which
updates the slower corrector part. The attitude observer
is implemented at IMU sampling frequency using Euler
integration.

The implementation is divided into three time-scales:
• IMU: The attitude observer and the predictor part of the

translational motion observer are implemented at IMU
frequency, becoming the fastest time scale.

• GNSS: The corrector part of the translational motion
observer is driven by the frequency of raw measure-
ments from the satellites. Estimation of the satellite
positions have to be available for every iteration of the
raw measurements. These can be estimated using the
broadcasted ephemeris data.

• Gains: The line-of-sight vectors of the satellites are
slowly time-varying and the gain matrix K of the
translational motion observer can therefore be updated
on the slowest time scale. To save computational effort
the observer gains can be determined every few minutes
instead of at GNSS receiver frequency, [15].

The gain matrices and covariance matrix, can be determined
by solving the discrete time-varying Riccati equation:

Pk|k−1 = AdPk−1|k−1AT
d +QT , (41)

Kk = Pk|k−1CT (CPk|k−1CT +R
)−1

, (42)

Pk|k = (In−KkC)Pk|k−1 (In−KkC)+KkRKT
k , (43)

where Ad is the discretized A matrix, using sample rate
equal to the GNSS frequency. The system order is denoted n.
The state and measurement covariance matrices are denoted
Q> 0 and R> 0. The R matrix consists of diagonal elements
of the range noise variance. The observer is tuned using the
parameters in Q, which describes the anticipated variance of
the process noise. The elements corresponding to position
and linear velocity in Q matrix are often beneficial to keep
small to obtain smooth estimates, whereas the specific force
element can be chosen larger. It is vital that the element
corresponding to the clock bias is chosen sufficiently large
such that the estimates can converge fast.
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The covariance matrix of the ambiguities, PN , is the sub-
matrix of the state covariance matrix, P, found as the (m−
1)× (m−1) lower right part of P (or m×m for the single-
differenced observer).

VIII. SIMULATION EXAMPLE

A simulation study is carried out to compare the perfor-
mance of the two proposed translational motion observers.
The UAV simulator presented in [23] is used with an
Aerosonde type UAV.

The differenced pseudo-range and carrier-phase measure-
ments are created from (8) and (9) at a frequency of
5 Hz, with added noise. The noise is a first order Markov
process, with time constant of 60 s, where white noise with
standard deviation of 5 m is low-pass filtered into pseudo-
range and carrier-phase measurement noise. The rover and
base station measurements experiences the same Markov
noise to simulate the same ionosphere and troposphere. An
additional, smaller white noise have been added to the rover
measurements, with variances of 0.10 m and 0.001 m, to
simulate receiver noise on pseudo-range and carrier-phase
measurements. The geometric distance ∆ψi is computed
using the known satellite and receiver positions given in
Table I.

In the simulations the satellite velocities will be assumed
constant, making the satellite paths linear instead of curved,
which is a realistic condition only for a short period of time
but keeps the simulation simple. A scenario consisting of
a stationary base station and the UAV moving in a counter-
clockwise motion in the local xy-plane with a radius of 650 m
is simulated.

The accelerometer, magnetometer and gyroscope measure-
ments are simulated with a frequency of 400 Hz, where
white noise have been added with standard deviations of
0.0015 m/s2, 0.45 mGauss, and 0.16 deg/s, corresponding
to the noise specification similar to an Analog Devices 16488
IMU.

The observer gains are determined by solving a
discrete Riccati equation using the matrices given in
Sections IV and V, and R = blkdiag(0.10Im,0.001Im)
and Q = blkdiag(0I3,10−5I3,2.5 · 10−3I3,0I3,1000,10−2Im),
where the 13th element is only used in the single-differenced
observer. Furthermore, Mb = 0.0087, k1 = 0.8, k2 = 0.2, kI =
0.004, and λ = 0.1903 m. The single-differenced observer
is sensitive towards the initial value of ∆β̂ and therefore
needs a good initial estimate, which can be found as; ∆β̂0 ≈
∆ρ0 = ρr

i,0− ρs
i,0, being the initial pseudo-range difference

measurement.
The estimation errors with real valued and fixed ambigu-

ities are depicted in Fig. 1, for single-difference, and Fig. 2
for double-differenced.

Within 10 seconds the errors are smaller than 10cm. How-
ever a small stationary error is present due to measurement
noise. The performance of the four observers are comparable,
where the double-differenced observer has a better base
station estimate. The sinusoidal effect on the rover estimates
is caused by the chosen flight path. To showcase the expected
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Fig. 1. Position errors of single-difference observer with real valued (red)
and fixed ambiguities (blue). Base station error in dashed lines and rover
error in solid lines. The noise free simulation is shown with black dashed
lines.
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Fig. 2. Position errors of double-difference observer with real valued
(magenta) and fixed ambiguities (yellow). Base station error in dashed lines
and rover error in solid lines. The noise free simulation is shown with black
dashed lines.

effect a case without any noise is included in Fig. 1 and Fig.
2 as black lines. It is evident that the observers with fixed
integers follow the sinusoidal effect best. No such effect is
present during a straight flight path.

As an example of the real valued ambiguity errors, the
estimation of ∆N11 and ∇∆N1,11 is depicted in Fig. 3. Similar
behavior is seen for the other satellites.

The ambiguities are fixed before 30s. The small difference
between the four observer estimates is due to the real valued
ambiguities being close to the true fixed value.

IX. CONCLUSIONS

Two nonlinear translational motion observers were pro-
posed for estimating position, linear velocity and attitude
using tightly coupled INS/GNSS integration in a dual GNSS-
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TABLE I
SATELLITE POSITIONS, VELOCITIES AND INTEGER AMBIGUITIES

SV x (m) y (m) z (m) ẋ (m/s) ẏ (m/s) ż (m/s) ∆Ni (−) ∇∆N1 j (−)
1 18590267.86 6297568.79 17915716.72 1066.87 2019.92 -1796.36 600800 -

11 23052191.14 9482190.19 8876630.61 654.73 1108.85 -2708.86 -1937600 2538400
14 -8320592.86 14161791.19 21076475.35 -2618.08 -183.57 -934.84 -703500 1304300
17 9289670.11 -14108222.35 20708751.43 2571.02 114.34 -1112.15 267900 332900
20 17875487.82 -5874206.28 18521323.27 -807.28 2276.52 1492.19 -873800 1474600
31 4341972.44 23303879.02 11796460.36 -931.45 -1174.28 2728.45 338600 262200
32 11724367.18 10345207.31 21515170.95 -1480.32 2293.47 -241.92 -1007600 1608400
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Fig. 3. Estimation error of real valued integer ambiguity in single- (red)
and double- (magenta) differenced observer, with the fixed ambiguities of
the single- (blue) and double- (yellow) differenced observers.

receiver environment. The position of a moving rover and
a stationary base station are estimated as states of the
observers. The observers utilize the error between measured
and estimated range from satellite constellation to the rover
and base station.

The difference between the proposed observers is the
range measurement model. The first observer uses the single-
differenced approach, where the clock range error is also
included in the state vector, while the second observer
utilize the double-differenced measurements. In both cases
the integer ambiguity of the carrier-phase measurements are
resolved.

The observers are verified using a UAV simulator, showing
convergence of integer ambiguity as well as small estimation
errors for position of rover and base station.

APPENDIX

A. Single-Differenced Injection Terms
Inspired by [15] the measurement errors are expanded as a
second order Taylor’s polynomial. First lets consider the base
station terms of the measurement error in (23):

eρ,i,s = ‖pe
s− pe

i ‖2−‖ p̂e
s− pe

i ‖2. (44)

The Taylor approximation of h(pe
s) := ‖pe

s− pe
i ‖2 at a point

p̂e
s = pe

s is then:

h(pe
s)≈ ‖ p̂e

s− pe
i ‖2 +

(
p̂e

s− pe
i

‖ p̂e
s− pe

i ‖2

)T

(p̂e
s− pe

s)+h.o.t.

eρ,i,s ≈
(

p̂e
s− pe

i
‖ p̂e

s− pe
i ‖2

)T

p̃e
s +h.o.t.

Following the same approach the Taylor approximation for
the rover term can be found. Only eρ,i will be shown as eϕ,i

follows directly from this:

eρ,i =

(
p̂e

r− pe
i

ψ̂i

)T

p̃r +

(
p̂e

s− pe
i

ψ̂s,i

)T

p̃e
s +∆β̃

+
1
2

p̃T
r Ȟi p̃r +

1
2

p̃T
s Ȟs,i p̃s,

(45)

with

Ȟi =
1
ψ̌i

I3−
(p̌e

r− pe
i )(p̌e

r− pe
i )

T

ψ̌3
i

. (46)

Ȟs,i =
1

ψ̌s,i
I3−

(p̌e
s− pe

i )(p̌e
s− pe

i )
T

ψ̌3
s,i

. (47)

The higher order term considers a point p̌e
r on the line

between the estimated and true rover position, with corre-
sponding satellite distance ψ̌i = ‖p̌e

r − pe
i ‖2. Similarly is p̌e

s
defined as a point between estimated and true base station
position with ψ̌s,i = ‖p̌e

s− pe
i ‖2. Bounds on the last terms of

(45), γi = 1/2 p̃T Ȟi p̃ and γs,i = 1/2p̃T
s Ȟs,i p̃s, follows directly

from [15]:

‖γi‖2 ≤
1
ψ
‖ p̃r‖2

2, ‖γs,i‖2 ≤
1

ψ
s

‖ p̃s‖2
2 (48)

where ψ and ψ
s

are assumed positive lower bounds on the
geometric distances.

B. Double-Differenced Injection Terms
With Taylor’s theorem by inspiration from [15] the measure-
ment error can be written as:

eρ,i j =

( p̂e
r− pe

j

ψ̂ j

)T

p̃r−
(

p̂e
r− pe

i
ψ̂i

)T

p̃r +
1
2

p̃T
r
(
Ȟ j− Ȟi

)
p̃r

+

( p̂e
s− pe

j

ψ̂s, j

)T

p̃s−
(

p̂e
s− pe

i
ψ̂s,i

)T

p̃s +
1
2

p̃T
s
(
Ȟs, j− Ȟs,i

)
p̃s

with Ȟi and Ȟs,i given by (46)–(47). The expression for Ȟ j
and Ȟs, j are found from (46)–(47) by substituting i with j.

The higher order terms are bounded similarly to the single-
differenced observer:

γ j =
1
2

p̃T
r
(
Ȟ j− Ȟi

)
p̃r, ‖γ j‖2 ≤

2
ψ
‖ p̃r‖2

2, (49)

γs, j =
1
2

p̃T
s
(
Ȟs, j− Ȟs,i

)
p̃s, ‖γs, j‖2 ≤

2
ψ

s

‖p̃s‖2
2, (50)

where the geometric distances from the rover and base
station to the ith and jth satellite are both assumed to be
lower bounded by ψ and ψ

s
, respectively.
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