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Abstract— A modular nonlinear observer is considered for
tightly coupled integration of inertial measurements with global
satellite measurements. A real-time-kinematic approach is uti-
lized where the rover and base station measure pseudoranges,
carrier phase, and carrier phase derived Doppler, to be used
in a dual receiver configuration. The modular observer design
consists of a nonlinear attitude observer and a translational
motion observer. The attitude observer represents the vehicle
attitude as unit quaternions and estimates the gyro bias. A
translational motion observer based on the double-differenced
measurements between the rover and base station receiver
is proposed. The ambiguities introduced by the carrier-phase
measurements are included in the state vector and are initially
considered real valued, later to be resolved to integer values.
The advantages of the nonlinear observer compared to a
Kalman filter are; reduced computational load, no linearization
requirement of the model and proven stability. The proposed
observer is verified using experimental data from flights with an
unmanned aerial vehicle (UAV), where the position estimates
are shown to be within 2-4 centimetres of a GPS L, based
real-time-kinematic reference solution.

I. INTRODUCTION

Integrating measurements from an inertial measurement
unit (IMU) with global navigation satellite system (GNSS)
measurements is a common method for estimation of posi-
tion, linear velocity and attitude (PVA) of a vehicle. The
most common integration scheme is the loosely-coupled
approach where inertial measurements are integrated with
GNSS position and velocity estimates. The position and
velocity estimates used in a loosely-coupled system are
supplied by a GNSS receiver, where the navigation solution
is determined by an integration algorithm, most typically a
Kalman filter. Due to the unknown tuning of the filter in the
GNSS receiver it can be preferred to use the measurements
from the satellites directly in navigation systems to opti-
mize its performance. A tightly-coupled integration scheme
can be utilized where inertial measurements are integrated
with pseudorange, carrier-phase and Doppler measurements,
thereby correcting the state estimates using measurements
in the range domain rather than in the position domain.
In general tightly-coupled systems have higher performance
than loosely-coupled systems as a higher level of control
of the nuisance and noise terms can be accounted for. A
further advantage of the tightly-coupled system is that aiding
from even a few satellites can be used, whereas for loosely-
coupled systems at least four satellites must be available
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for position determination in the receiver. Moreover, at least
four satellites are required for obtaining aiding information
in loosely-coupled systems, whereas tightly-coupled systems
can offer partial aiding with fewer satellites. This increases
the robustness of tightly-coupled solutions to satellite signal
obstruction.

Tightly-coupled multi-sensor systems using filters, such
as the Extended Kalman Filter (EKF), have been subject of
extensive research, see [1] and [2]. In [3] enhancements for
a tightly-coupled integration on small unmanned vehicles
(UAVs) are presented. A low-cost GNSS/IMU integration
using a Micro-Electro-Mechanical System (MEMS) IMU
with a nonlinear KF approach is developed in [4], while [5]
considers a tightly coupled integration using a Kalman filter
for accurate mapping using an aerial platform. A comparative
study of loosely, tightly and ultra-tightly coupled systems
was investigated by [6] using a wide range of inertial sensor
grades, and the GIGET tool.

Higher accuracy can be achieved by taking atmospheric
disturbances into account, such as ionospheric and tropo-
spheric delay of the satellite signal. These disturbances
can, to some extend, be modelled in nominal conditions,
or mitigated by using dual or multi-frequency GNSS re-
ceivers. Multi-frequency receivers facilitate estimation and
compensation of the ionospheric delay, see [2, Section 8.6]
or [7]. However, for low-cost applications the high cost of
the necessary receiver front-ends presently prevents wide
applicability of multi-frequency systems. Furthermore, multi-
frequency receivers and antennas often require more space
when mounted and can therefore limit their inclusion in
constrained applications such as unmanned aerial vehicles
(UAVs).

Inclusion of the carrier-phase measurement allows for
achieving higher accuracy if the introduced integer ambi-
guities can be resolved. In [8] a low-cost multiple GNSS
antenna configuration is utilized to aid in the ambiguity
resolution performed. Multiple approaches for estimation of
the integer ambiguities have been studied, e.g. [9], [10], [11]
proposing the widely used LAMBDA method, or [12] where
a computationally efficient method was proposed using a
common-position-shift approach. In [13] an approach using
an aiding INS to resolve the ambiguities was investigated,
while [14] proposes a near-real-time method based on mea-
surements from multiple epochs. Another method is the
real-time-kinematic (RTK) solution where a dual-receiver
configuration with a stationary base station and a static
or moving rover (i.e. a vehicle) is used. The base station
broadcasts its satellite measurements to the rover, which in



turn performs differencing of the measurements for use in
the navigation system. With a known base station position
precise positioning of the rover is possible. It is also possible
to utilize a moving base station: if the base station position
is always known the precision can be retained, otherwise
inertial sensors might be added to the base station to offer
similar state estimation as for the rover. The RTK solution
operates under the assumption that the separation between
the rover and base station (called the baseline) is short
such that the atmospheric signal delays observed by the
two receivers are similar. In [15] and [16] a low-cost open
source RTK solution is developed. Some environments can
decrease the accuracy of the acquired solution due to satellite
blockage, which is the topic of [17] where Doppler measure-
ments are used to aid in the RTK computations. Multipath
caused by reflected satellite signals can also cause errors
in the pseudorange and carrier-phase measurements, but can
to some extent be remedied, e.g. by the proposed method of
[18]. In [19] the time differenced carrier-phase measurements
are used instead of delta-range measurements in a tightly-
coupled single receiver system, showing improvements to
velocity and attitude estimation, while introduction of a base
station was encouraged to obtain centimetre accuracy. Other
approaches include the precise point positioning (PPP), see
e.g. [20], or differential GNSS, see e.g. [21], which can
give results with precision similar to RTK systems. In [22]
a tightly-coupled Kalman filter is proposed for a low-cost
sensors solution, where the single-differenced ambiguities
are included in the state vector, and the Kalman filter solution
is verified using automotive experimental data.

When low-cost sensors are used, care should be taken to
avoid long time periods of satellite obstruction, as the quality
of the inertial sensors will introduce fast diverging state
estimates. The measurement noise levels will be higher for
low-cost sensors, which will introduce large output noise and
might prevent correct resolution of the phase ambiguities.

Applications for tightly-coupled RTK GNSS/INS integra-
tion are many and varied. Here the focus will be on UAVs
where the applications could include automated landing.
UAVs can be landed in vertically placed nets at landing sites
or on ships, which require high precision. This paper will
focus on a low-cost solution for UAV flights close to an area
of interest equipped with a stationary base station.

Previously only loosely-coupled GNSS/INS nonlinear ob-
servers have been proposed, leaving the EKF based observers
to dominate the field of tight integration. However, recently
nonlinear observers have gained interest for tightly-coupled
GNSS/INS integration e.g. [23], [24], [25], [26], where
long baseline configurations have been considered. Nonlinear
observers have some advantages compared to Kalman filters
such as; proven stability results for nonlinear systems, no
need for linearization of the kinematic model, and lower
computational load as shown in e.g. [27] where a tightly
coupled nonlinear observer was shown to constitute only
around 25% of a comparable multiplicative extended Kalman
filter implementation.

A modular observer structure will be considered here,

consisting of the nonlinear attitude estimator proposed in [28]
and a translational motion observer. The observer structure
is based on results by [29] and [30].

This paper is an extension of the work by [27], and
[31], here proposing a translational motion observer for
estimation of position, linear velocity, and integer ambigu-
ities. The injection terms for the observer are the errors
between estimated and measured double-differenced (DD)
pseudorange, carrier phase and carrier phase derived Doppler
measurements. The method can be implemented using low
cost sensors such as MEMS-based inertial sensors and single
frequency GNSS receivers. The current paper offers two
main contributions to the previous work of the authors:

Time Derivative of Carrier Phase Measurements: An
additional aiding measurement is considered, and the ob-
servers have been expanded to include the time derivative
of the carrier-phase measurement. This measurement can
be utilized for injection terms in the double-differenced
observer, and require determination of satellite velocity. The
time derivative of the carrier phase measurement is used
rather than the raw Doppler measurement, due to the lower
measurement noise.

Experimental Verification: The proposed observer has
been experimentally verified by data acquired using a fixed-
wing UAV equipped with a low-cost sensor suite consisting
of an ADIS-16488 IMU and a u-Blox LEA-6T GPS L,
receiver. A second u-Blox receiver of the same model was
used as the base station. The reference was determined with
an open source RTK solution using the same receiver pair.

A. Notation and Preliminaries

A column vector x € R? is denoted x := [x1;x2;x3] with
transpose xT and vector norm ||x||2. The skew-symmetric
matrix of a vector x is given as:

0 —X3 X
S(x):= 1| x3 0 —X1
—X2 X1 0

A unit quaternion, g = [r4; 4], is described as consisting of a
real part, r, € R, and a vector part, s, € R3, where llgll. = 1.
A vector x € R? can be represented as a quaternion with zero
real part; X = [0;x]. The product of two quaternions ¢; and
q> is the Hamiltonian product denoted ¢ ® ¢».

Superscripts will be used to signify which coordinate
frame a vector is decomposed in. Rotation between the
frames may be represented by a quaternion, g5, describing
the rotation from coordinate frame a to ¢, with the corre-
sponding rotation matrix R(gS) € SO3. Various coordinate
frames will be used, where the Earth-Centered-Earth-Fixed
frame is denoted with e, while b will be used for Body-frame
with n denoting the North-East-Down frame. The Earth-
Centered-Inertial frame will be denoted with i and will only
be used for angular rates, such as the Earth rotation rate;
o?, as the i will later be used to signify signals from the ith

e’

satellite.



II. PROBLEM FORMULATION

A dual receiver configuration consisting of a moving
rover and a stationary base station, each equipped with a
GNSS receiver, is considered. The base station measures
pseudorange, carrier phase and carrier phase derived Doppler
and transmits these to the rover for processing, followed by
position and velocity estimation. The rover will in addition
be equipped with inertial sensors providing specific force and
angular rate measurements.

The objective is to estimate position, linear velocity and
attitude (PVA) of a moving vehicle by tightly-coupled inte-
gration of mentioned measurements. Estimation of the rover
PVA as well as the baseline, i.e. the vector (displacement)
between rover and base station, are of interest.

The kinematic strapdown equations of the rover are given
as:

Py =, ()
vy = =2S(wp )i + £ +8°(pr)s 2)
. 1 _ 1__

CIZZ EQZ@’@%—EQ’;@CI? 3)

where the position, linear velocity and attitude of the rover
are described by pf, v¢ and gj, respectively. The Earth
rotation rate in ECEF with respect to ECI decomposed in
the ECEF frame is denoted ®;,, and is a known constant.
The effect of the Earth rotation will be very small compared
to the other terms of (2), and can often be disregarded
during implementation. However, here it will be included
for completeness. The rotation rate wibb describes the Body
rotation rate with respect to the ECI frame. The specific force
is given by f¢ while g°(p¢) specify the position dependent
plumb-bob gravity vector. The base station is assumed to be
stationary; p$ = 0.

A. Measurement Assumptions

It is assumed that the rover is equipped with an Inertial
Measurement Unit (IMU), a GNSS receiver and a magne-
tometer. The following assumptions on the measurements are
made:

Assumption 1: Specific force measurements are available
as fiyyy ="

Remark 1: The accelerometer bias estimation module in
[32] and [33] can be added as a first stage providing a bias-
compensated acceleration measurement in cascade with the
proposed observer. Since this is a cascade, this module has
no impact on stability of the error dynamics.

Assumption 2: The rotational rate of a gyro is measured
as ®) vy = ©5 +bP. The gyro bias, b € R? is assumed to
be slowly time-varying, b” = 0, satisfying ||b?||, < M, for a
known bound M,,.

Assumption 3: a magnetometer measures the magnetic
field vector at the rover, m]lZAAG = mP, while the position
dependent Earth magnetic field m® in ECEF is assumed
known.

Furthermore, the rover and base station are assumed to
be equipped with GNSS-receivers measuring; pseudo-range,

carrier phase and carrier phase derived Doppler, from at least
four common satellites, m > 4. The satellite positions and
velocities are assumed known, which can be satisfied by
determination using the broadcast ephemeris data.

The pseudorange and carrier phase measurements at a
location p° transmitted by the ith satellite, see Fig. la, can
be generalized as:

pi=VYi+B+Y+e +np, “4)
AQ; = Yi+ AN+ B+ Y+ €p+ng,, 5)

where the pseudo-range and carrier-phase measurements
from the ith satellite are denoted p; and ¢;, fori=1,2,... ,m.
The geometric range between receiver and satellite is denoted
yi := ||p° — p§ll2, where p¢ is the satellite position. The
carrier-phase integer ambiguity is denoted N; with signal
wavelength A. The parameters &, and &, denote the com-
bined orbital, ionospheric and tropospheric delays of the
satellite measurements. Furthermore, &g includes antenna
induced errors. The n, parameters cover individual stochastic
errors such as measurement noise and multipath effect. The
noise terms have been explicitly included for the aiding
measurements to ensure that the measurement noise is not
considered cancelled in the differences introduced later. The
measurement noise of the aiding measurement will change
magnitude when differenced which should be taken into
account in the tuning of the observer. The noise terms for the
inertial measurements will not be explicitly included as they
will not undergo operations that will change their character-
istics. All noise sources will be systematically considered in
the tuning of the observer. The satellite clock error ¥; can
be corrected by applying the clock correction coefficients
from the navigation data message. The receiver clock bias,
describing the timing difference between receiver and system
time, affects all coinciding range measurements similarly, [2,
Section 8.4.3]. In the following the clock range bias is treated
as a common mode bias, § € R, and is assumed to be slowly
time-varying.

The bias is expressed as B = cA,; with A,; being the
receiver clock bias and ¢ being the speed of light. Similarly,
the satellite clock error can be expressed as % = cA,; with
A;,; being the bias of the ith satellite clock.

Due to large measurement noise, the raw Doppler mea-
surements are usually not included as aiding information.
The measurements can either be filtered, which has the
drawback of reducing the sample frequency, removing high
frequency motion and introduce phase lag, or a substitute
can be determined as the time derivative of the carrier-phase
measurements. In [34] the carrier phase derived Doppler is
obtained by use of a finite impulse response filter, resulting
in accurate velocity measurements for a standalone Global
Positioning System (GPS) receiver. In the following the time
derivative of the carrier-phase will be considered, [35]:

AQi =i+ B+ +rg, (6)

where the ambiguity and multipath terms have been elim-
inated due to the short time horizon of the derivative.
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(a) Undifferenced measurements be-
tween one receiver and one satellite.

(b) Single-difference measurements be-
tween two receivers and one satellite.

§ g

(c) Double-difference measurements be-
tween two receivers and two satellites.

Fig. 1: GNSS measurements for un-, single- and double-differenced configurations

Furthermore, by assuming constant atmospheric delays over
the time interval between consecutive phase measurements
these can also be eliminated, where any residual delays will
be absorbed by the noise term, [35].

A generalized model for the time derivative of the phase
measurement can be expressed as:

A0 = hT (V=) + B + T+ 1o, (7

where the satellite velocity is denoted v¢, and the line-of-sight
vector is; h; = (p¢ — p§)/yi. The constructed carrier phase
derived measurement is denoted v;, while ny ; describes the
stochastic errors.

Remark 2: The carrier-phase measurements, ¢, are given
in units of cycles, and can be converted to meters by
multiplication with the wavelength. The carrier phase derived
Doppler measurements, v, are given in Hertz and can be
converted to velocity described in meters per second by
multiplication with the wavelength.

Superscripts of r and s will be used to distinguish between
the measurements at rover and base station, respectively.
These superscripts are not to be confused with the coordinate
frame as the satellite measurements will always be given in
the ECEF-frame. It is assumed that the rover is sufficiently
close to the base station such that the ionospheric and
tropospheric delays are spatially correlated between the two
receivers and will therefore cancel, i.e. 85 =g, 8(7, = 63,,
€, = &,. While it is possible to obtain centimetre accuracy
of the position estimates with baseline of 20 km for resolved
ambiguities, see [2, Section 10.2], maintaining high accu-
racy requires shorter baselines. Short baselines, less than
10 km, are preferred to reduce cycle-slips, while for longer
baselines the accuracy degrades due to decorrelation of the
atmospheric propagation errors. This can be mitigated by
use of dual-frequency GNSS measurements and modelling of
the troposphere. The atmospheric disturbances can therefore
be corrected for by differencing measurements at rover
position with measurements at the base station. The GNSS
measurement configuration is depicted in Fig. 1b showing
two satellites, i and j, and two receivers, r and b, where
the baseline is shown as a dashed line. It is vital when
differencing measurements that the they are acquired at the

same time epoch.
The single-differenced (SD) measurements between rover
and base station are given as:

Api = AY; +AB +nap i, (®)

AAQ; = Ay; + AN;A + AB +nag,i ©)]

AAV; = BT (Ve —vE) + BV nay i, (10)

where Ap; := p] — p!, AQ; == @] — @, Av; := v] — V7,

AN; := N — N}, AB := B"— B, and Ay; := y — y/ is
the geometric baseline between rover and base station. The

differenced noise terms are given as; npp,; := n;i fn;")i,
NAg,i =Ny — Mg, and nay; :=ny, ; —ny, ;. The normalised

line-of-sight vectors h! and h}, between the ith satellite and
rover and base station are given as:

_ pi—pf e i
1P = pill2’ Ips =Pl
From (8) and (9) it is evident that AB is the same for all
satellites so it can be cancelled by further differencing the
measurements this time between satellites. This is typically
achieved by selecting the satellite with highest elevation as
reference. The double-differenced (DD) measurement prin-

ciple is depicted in Fig. 1c while the measurement model is
given as:

"

A

1

(1)

VAp;j = VAY;j +nvap ij, (12)
AVA(pij ZVAIIII‘J‘—FVAN,‘J‘& —|—nVA¢7ij, (13)
AVAV; = h (Ve =) —hiT (vE—v8) + 150 04

sT e
—hi Vi +nvag,ij,

where VAp;; := Ap; — Ap;, VAQ;; := A@Q; — Ag;, VAV;; :=
Al)j — Av;, VAI[I,'j = Al[/j — Ay;, and VAN,'j = ANJ' — AN;
with the jth satellite representing the reference satellite. The
measurement Noise iS; nyap ij := Aap,j — NAp.is NVAg,ij ‘=
NAg.j —Nag.i and nyay ij := Nay,j — NAv i-

Due to measurement differencing between satellites, the
number of available observations will be m — 1, where m
is the number of tracked satellites. The double-differenced
measurements will be used in injection terms of the proposed
observer structure. The single-differenced measurements are



not utilized in the observer structure due to the presence of
the receiver clock bias.

When differencing GNSS measurements a rule of thumb
is that the stochastic error will increase in standard deviation
by /2, while the systematic errors will decrease, see [36].

III. NOISE ANALYSIS

A common assumption of the Extended Kalman filter
is that the measurement and process noise are Gaussian.
The nonlinear observer structure proposed here does not
make any specific assumptions on the distribution of GNSS
measurement noise in; (4)—(7), (8)—(10) and (12)—(14), or the
inertial measurement noise introduced with the specific force,
angular rate and magnetometer measurements. However,
when tuning the observer gains it is advantageous to have
the knowledge of the noise levels and types. It is therefore
desired to investigate the noise distribution and determine the
standard deviation of the undifferenced (UD) and double-
differenced GNSS measurement noise. The noise type is
the same for all types and brands of receivers, whereas the
standard deviations are receiver and antenna specific. For
the inertial measurement noise industrial data sheets offer
accurate noise characteristics. If the noise characteristics
cannot be assumed Gaussian white the state space model can
be augmented to include colored noise models with white
driving noise, see e.g. [2, Section 4.6.3] or [37, Section 7.5].
The following section will therefore only consider the GNSS
measurement noise.

Experimental data was collected at 1 Hz, by two identical
u-Blox LEA-6T receivers with a baseline of 1 m. The exper-
iment was carried out at latitude 63.4° and longitude 10.5°,
Norway, on a rooftop. Some multipath effect is experienced
which affect the undifferenced measurements, while it can
be mostly mitigated for the double-differenced measurements
due to the short baseline. The positions of the receivers were
determined by averaging over a 24 hour long data set. Some
satellites were occasionally obstructed and the noise levels
of the GNSS measurements are therefore found during a
time interval with multiple common satellites visible by both
receivers. The satellites are commonly visible for 3 — 6 hours
during good open sky conditions.

In the case of the undifferenced measurements the raw
pseudorange, carrier phase and carrier phase derived Doppler
measurements are corrected for: time of transmission (the
satellite moves during the signal transmission time), at-
mospheric disturbances, and receiver clock bias (estimated
using a Kalman filter). Furthermore, the geometric range
from satellite to receiver Y and ;] are computed. The
tropospheric delay can be modelled using e.g. [38], whereas
the ionospheric delay might be modelled using the Klobuchar
model. For the UD noise terms some residual errors will
be present due to the imperfection of the applied models.
Furthermore, uncertainty of the estimated receiver clock and
multipath effects remain.

For the double-differenced measurements the noise terms
are found by isolation of n, in (12)-(14). Given the short
baseline (1 meter), the ionospheric and tropospheric delays

are considered to be completely removed, whereas the resid-
ual atmospheric effects are negligible such that the noise term
only consists of receiver noise and multipath.

The noise estimates of the DD measurements are shown
in Fig. 2a—2c, with 6 available satellites; resulting in 5 DD
measurements. The noise estimates have been de-trended to
remove first order dependencies and initial offset, which is
common practice e.g. when determining scintillation effects,
see [39] or [40]. The colors indicate measurements from
different satellites. The average standard deviations of the
estimated measurement noise are presented in Table I, with
the noise of the UD measurements for comparison. The
standard deviations corresponds well with the results found
in [1, Section 9.4.2.4] for an update rate of 1 Hz. Moreover,
according to [1, Section 9.4.2.4] the standard deviations
might be increased with higher receiver sampling rates.

To obtain a large time window for noise analysis some
of the satellites have low elevation at the edges of the time
window, this results in an increase in standard deviation, as
seen in e.g. the yellow and red graphs in Fig 2c around
9000 — 10000 seconds. Nevertheless these satellites have
been included to estimate an average standard deviation of
the noise terms under various conditions. Similar effects can
be seen in [41] where a filter for separation of the multipath
components is proposed, while also locating reflecting ob-
jects. Short and long baselines are considered in [42] and
[43], where undifferenced, single- and double-differenced
GNSS signals from several constellations are analysed.

TABLE I: Standard deviations of GNSS measurements.

UD DD
Pseudorange, p, [m] 1.560 1.597
Carrier-phase, @, [m] 0.207  0.020
Derived Doppler, v, [m/s] 0.682 0.055

The double-differenced pseudorange and carrier phase
derived Doppler measurements appear almost white, whereas
the carrier phase measurements include non-white behaviour.
There are two common practices for handling this in ob-
server structures: a) augment the observer to model states
for the non-white noise processes, or b) assume a white
distribution with larger standard deviation than the actual
distribution to over-bound the measurement noise. The over-
bounding method was proposed in [44], and used e.g. in
[45] where multipath, receiver noise and atmospheric delays
were investigated for pseudoranges in a single-differenced
configuration. In general the code and phase noise can be
represented by over-bounding white noise, even though a
Gauss-Markov process is a more suitable model. It might be
beneficial to use slightly inflated noise characteristics even
when employing Gauss-Markov processes. Additionally, the
distributions cannot be expected to be stationary as several
factors can cause changes on the fly such as: multipath
(especially at the rover), elevation angle, rover dynamics
and C/Ny levels. In conclusion; it might be advantageous
to use higher values for the standard deviations when used
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Fig. 2: Noise analysis of double-differenced GNSS measurements, over a 3 hours period.

for observer tuning to accommodate for imperfect Gaussian
white noise behaviour.

IV. OBSERVER STRUCTURE

In the following sections a nonlinear observer is pro-
posed based on double-differenced GPS L; measurements. A
modular observer structure consisting of a nonlinear attitude
estimator and a translational motion observer (TMO) is
considered. The framework is the same as presented in
[27] and [31] although a different TMO is used: here the
dual receiver configuration is used leading to differenced
measurements, whereas in [27], a single receiver was used
to obtain a tightly-coupled navigation solution.

The observer structure, shown in Fig. 3, consists of:
two GNSS receivers, IMU, magnetometer (MAG), nonlinear
attitude observer, a TMO, and a Riccati solver with a gain
estimator. Two feedback loops are present in the structure:
the feedback of fe from the TMO to the attitude observer,
and a feedback of the estimated rover position and velocity
to the computation of gain matrices.

Rover ol o
GNSS pL i (pl > 1 I
Receiver L | e e
rs Vr
Base L. |—> Riccati K _| Translational B
GNSS Dis Vi Solver & Qain Motion —>
Receiver | PR Computation |_I_: Observer I
Sy T
IMU 5 b
| “’il;:.n\% . < de
Attitude o B
b Observer Dip,

Fig. 3: Block diagram of observer structure.

The GNSS measurements (p/, @7, v/, p;, ¢, and v})
are measured by the receivers in the ECEF frame, while the
satellite positions and velocities (p§ and v{) are computed
from the ephemeris data, see [2, Appendix C]. These com-
putations are included in the ”"Base GNSS Receiver” block
for convenience.

Remark 3: The carrier phase derived Doppler measure-
ment is based on the carrier-phase change, and expresses

the change in geometric distance and clock drift over a time
interval, see [2, Section C.4.2]. The carrier phase derived
Doppler measurement therefore needs to be compensated for
satellite motions during the time interval when compared to
v¢. Several options are available for estimating the average
satellite velocity of the interval. Here v{ will express the
satellite velocity averaged over the beginning and end of the
relevant GNSS receiver sample interval.

The Riccati Solver & Gain Estimator” block considers the
choice of gain matrix K for the TMO. In order to compute
the injection terms the estimated position and velocity of the
rover and base station is fed back from the TMO.

When considering the stability of the observer structure it is
advantageous to examine the individual parts of the modular
structure. The nonlinear attitude observer was proven to
be semi-globally exponentially stable (SGES) with respect
to attitude initialization in [28]. Following the results of
[27], the equilibrium point of the double-differenced observer
proposed in Section VI, is exponentially stable. The com-
plete observer structure will be exponentially stable with
a semi-global region of attraction with respect to attitude
initialization due to the feedback interconnection and the
SGES properties of the attitude estimator. A rigorous stability
proof supporting this is given in [46]. The observer position
and velocity estimates can be accurately initialized with the
procedure proposed in [27].

In the following, the nonlinear attitude observer will be
introduced in Section V, while the TMO will be introduced
utilizing the double-differenced receiver configuration in
Section VI.

V. NONLINEAR ATTITUDE OBSERVER

The following section introduces the nonlinear attitude
observer. The orientation of the stationary base station is
unimportant and only the attitude of the moving rover will
be considered.

The attitude of the rover, given as the rotation between
Body- and ECEF-frame, is represented as a unit quaternion
to avoid singularities at steep pitch angles. A recent attitude
observer proposed by [29], [47], [32], is used where addi-



tionally the gyro bias is determined. The nonlinear attitude
observer with injection term & is introduced as:

1 = N\ 1
45 = 2%@( ibimu — b +G> - gwfe®qi;, (15)
b = Proj(—k;6, |5 <M;), (16)
& =k} x R(G5)Tv] + kavh x R(G5)Tv5, )

where Proj(+,-) describes the projection operator limiting the
gyro bias estimate to a sphere with radius Mj;, with M; > M.
The tuning constants ky, k» and k; are chosen positive and
sufficiently large.

The injection term considers two vectors y’l’ and yg in the
Body-frame and their corresponding vectors y{ and v in the
ECEF-frame. These vectors can be chosen in various ways
but will here be based on specific force and magnetic field:

b b
W= Jimu W= MMAG P
1 = b ) 2 b Z1»
||fIMUH2 HmMAG||2
fe me
Vi = V= e X0,
lI7¢]l2 [|me[2

where m¢ is the position dependent magnetic field vector of
the Earth assumed known for the rover’s estimated position
and the specific force estimate f¢ is supplied by the TMO.

An advantage of this attitude observer is the constant gains
of the injection term, leading to a lower computational load
compared to other estimators where a Kalman filter approach
will have a significantly higher load due to the matrix inverse
and the additional propagation of a covariance matrix. In [27]
a similar nonlinear observer is compared to a Multiplicative
Extended Kalman filter (MEKF), where the attitude observer
was seen to constitute only around 20% of the computational
load of the MEKEF attitude part (and around 25% when the
entire observer structures were compared).

VI. DOUBLE-DIFFERENCE NONLINEAR OBSERVER

Denoting the ith satellite as the reference satellite, the
double-differenced measurement errors can be used as in-
jection terms in the proposed translational motion observer:

pPl="+ mi:l (Kfpem+Kf(pe<p,ij+Kj[»w€u,ij>, (18)
=1
v*i:—ZS( of,) 05+ f +&°(p})
Z_,( vpepl/+K egij+Kj eUlJ) >
& = —R(45)S(6) fimy
71( &p ep,j—l—Ké e(p,j—&—Ké eu,j), 20)
(@) mu +&, 2D
- I(ijep,jJrK eqij+K: ew) (22)
i,ﬂ
Z( Pepij+ K e(,,?,;,-+1<f’“ev,,-j). (23)

The gains to be determined, K]**, are considered slowly
time-varying. Here the auxiliary term, &, is presented in
order to determine the estimated specific force in ECEF
frame, see (21). The advantage of using double-differenced
measurements is that the receiver clock bias is cancelled
and can therefore be excluded from estimation, while in
single receiver configurations it is included in the state
vector, see e.g. [46]. The double-differenced phase am-
biguities, VAN, are represented as a vector with m — 1
elements described as the difference between the single-
differenced ambiguities of the ith and jth satellite, i.e.
VAN = [AN) — AN;; AN, — ANj;...;AN; — AN;]. The ambi-
guity estimates are propagated by the translational motion
observer as real valued estimates and can after some conver-
gence be fixed to integer values, which will be discussed in
detail in Section VI-B.

It is desired to include the base station position in the
observer estimation, such that the observer does not rely on
access to a pre-surveyed position, but can be initialized with
a more inaccurate estimate of the base station position.

The structure of the TMO is similar to [31] with additional
injection terms based on the carrier phase derived Doppler
measurements. The injection terms are the difference be-
tween measured and estimated double-differenced satellite
signals: €pij = VApij — VAﬁij, Co,ij = l(VA(pij — VA([A),']‘)
and ey ;j := A(VAv;; — VAD;;), where the estimated terms
are:

VApij = VA,
AVAP;; = VAY;; — VAN,
AVAD;; = I (06 —v) — hiT (96— ) +

(24)
(25)
hsT e_hsT 67 (26)

and the estimated double-differenced geometric baseline is:

VAW = ||p7 = pilla = 1157 — pill2 = 1155 — pill2 @7
+165 = pill2,
with the estimated line-of-sight vectors:
he — pe . pe — pe
= LB e D TP (g
155 = pill2 155 —pill2

Investigating the observer stability, the error states are in-
troduced as f, := p¢ — p¢, ¥, == v — ¢, fi= f¢— f¢, ps =
p¢—p¢, and VAN := VAN — VAN, and the state vector of the
error dynamics is defined as; x = [ﬁ,;ﬁ,;f; Ps; VAN]. Here a
combination of (20) and (21) is used to substitute the state
& with f¢, as done in [46].

In order to determine the gains, KJ*-*, the injection terms are
linearised with respect to the observer states, see Appendix
A:

ep.ij = CpijE+Mp.ijs (29)
eg.ij = Co,ijX+Ng,ij, (30)
ev,ij = Cu %+ Nv.ij, 3D

where 1, ;; consists of measurement noise and higher order
nonlinear terms, which can be disregarded in the gain selec-
tion under the assumption that the TMO is accurately ini-
tialized. The row vectors consist of the following elements:



Cp,ij = [I:\l;’;lovou_ilf;a/\o]s C(D,ij = [il;;voa07 _I’/\l?;7z’1i.m—l]s
and Cy i; = A}, By} 0,457 ,0], where 1;,, 1 is a row of m—1
zeros with a 1 as the ith element. The differenced line-of-

sight vectors are described by:

flr _ ﬁi_p; ﬁi_pf 32
= e el T — el (32)
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A time-varying  measurement  matrix  consisting
of 3(m — 1) rows can be defined as; C :=
[Cp,il;« . ;Cp‘i(m,]);C(pyil; ce ;C(p’i(m,”;cu’i]; ves ;Cv,i(mfl)] .

The C matrix is slowly time-varying as the relative motion
of the satellites with respect to the receivers is small due to
the large separation.
The error dynamics can be determined as:
¥=(A—KC)X+0,(t,%)+ 6:(t,%) + 65(,%), (35)
Here J is the combined error variable ¥ := [;b] consisting
of the vector part of the quaternion, 7 = r — 7, and the gyro
bias error. The perturbation terms are described as, [28]:
61(2,x) == [0; =28 (@}, )x2 + (g°(py) — &°(py — x1)); 0;0;0; 0],
0:(,%) := [0,0;d;0;0;0], where:

d=(I- R(Q)T)R(QZ)(S(G)%,IMU)JCI}{V{U + /%)
—S(f) (I = R(§)T)R(q5) fivau — R(§)TR(q5)S(B) fiary-

In [28] it is shown that ||6:(¢,%)]2 < 73||Z||2, for some
positive 3. As in [31] the last perturbation term is a result
of the injection term linearisation; 65(¢,x) := K1 (¢,x), where
n@,x) = [Mp1:-- - Momi No,13 -3 Nomi Mo, 15 - - -3 Nwm]-

Remark 4: In [28] and [46], which this paper is based
on, a time-scaling factor 6 > 1 is introduced in the stability
proof. The stability results require the tuning parameter 6 to
be chosen sufficiently high, and [28] even offers conserva-
tion bounds. However, it is often advantageous to tune the
parameter by trial-and-error, increasing the parameter from
its lower bound, see also [48]. It is not necessary to include
the the scaling factor here, as the stability follows from the
results of the previous papers. Furthermore, the scaling can
be chosen at its lower bound, in the implementation, thereby
removing its effect on the observer structure.

The gain matrices should be chosen such that the nominal
linear time-varying closed loop dynamics (A — KC) is stable,
see Section VI-A, where:

(36)
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The observer system (18)—(23) has a semi-globally expo-
nentially stable region of attraction with respect to attitude
initialization errors and local exponential stablility with re-
spect to TMO initialization errors, following the results of
[46].

Selection of the reference satellite has great impact on the
performance of the observer, as errors in the measurements
from the reference satellite are propagated to all double-
differenced measurements. The reference satellite is therefore
often chosen as the satellite with the highest elevation
since propagation and multipath errors will generally be the
smallest, [49, Section 7.3.4]. Another advantage of choosing
the satellite with the highest elevation is that this satellite is
less likely to be obstructed, thereby keeping phase-lock with
the receiver. If the chosen reference satellite is obstructed, a
new reference has to be selected in order to construct new
double-differenced measurements.

A. Gain Selection

The following section will investigate the crucial consid-
erations of gain selection in connection to implementation
of the observer. The notation of this section will therefore
consider discrete time, instead of continuous time used to
present the observer structure in the previous sections. The
observer should be implemented using discrete time where
the sampling can be dictated by the fastest sensor, usually
the IMU, to ensure convergence and stability. For details
on discretization and implementation of a similar modular
observer structure see [48].

The TMO gains can, like in [28], be chosen to be constant,
thereby reducing the computational load of the observer.
However, better performance can be achieved by considering
the gains as time-varying, see e.g. [48]. Several options
for gain selection are available while in the following the
Riccati equation will be considered. In general, the method
for determining the gain matrices will not affect the observer
stability as long as K satisfies the conditions imposed by the
TMO stability requirements. The method described here is
similar to a Kalman filter where the gain is chosen based on
the solution of the discrete time-varying Riccati equation:

Pp—1 = PP 11 9T+ 0, (37
1

Ki = Py—1CT (CPy— i CT+R) (38)

Py = (I = KyC) Py (I = KiCO)T + Kk RK; T, (39)

where  is the discrete incrementing index and ® = 7 is the
discrete transition matrix, with the sample rate and system
order denoted as T and n, respectively. The dynamics of the
TMO is the same as for Kalman filters, and the P, R, and Q
matrices may therefore be interpreted as covariance matrices.
The error covariance matrix, P, has elements corresponding



to the state vector, and will therefore vary in size when the
number of available satellites changes due to the inclusion
of the carrier phase ambiguities. The covariance of the
ambiguities, Py, is found as the lower right m —1 xm—1
sub-matrix of P. The gain selection can be tuned by choosing
the measurement, R, and state covariance matrices, Q, where
it is common to consider them as consisting of the elements
pertaining to the covariance of the states or measurements,
o2, [1, Section 14.4.2]:

(40)
(41)

Q = diag (0;,,0,.,07,0, ,Ovan) ;
R = blockdiag (RVAP ,RVA(p7RVAD) .

The diagonal elements of the Q matrix correspond to the
state vector elements describing the expected level of noise
in the state. Similarly for the R matrix, the diagonal elements
correspond to variances of the aiding double-differenced
satellite measurements. In [1, Section 9.4.2.4] a time-varying
R-matrix is proposed where the coefficients are determined
based on the satellite elevation and range acceleration. Here
the matrices (40)—(41) are kept constant. Due to the dif-
ferencing with a reference satellite, Rya, has correlation
elements such that the covariance matrix is not diagonal.
The sub-matrices of R are in general given as:

2 1.2 1,0
Ovax 20vax " ?GVA*
lg2 52 152
2 Y VAx VAx 2 Y VAx
Rype = ) . ) , (42)
1,2 1,2 2
70vAx 20VAx T Ovax

where x is a placeholder for pseudorange, carrier phase or
carrier phase derived Doppler measurements. The Qyay i
constructed in a similar way where the diagonal is G% Ay With
the remaining elements being 1/ 20‘% AN

It is possible to reduce the computational load without
jeopardizing the performance significantly by determining
the TMO gains on a slower time-scale, as shown in [27]. The
observer can be implemented using the corrector-predictor
architecture of [50, Section 11.3.4], where the observer
estimates are propagated at IMU frequency and corrected
at the lower GNSS receiver frequency whenever satellite
measurements are available. The gain selection can then be
implemented on a third and slower time scale where the
gains are updated for every 100-2.000 GNSS correction. This
slower time-scale can be chosen since the C matrix is slowly
time-varying.

B. Integer Ambiguities

The ambiguities in the double-difference observer are
initially considered real valued, however, the precision can
be further improved if they are correctly resolved to inte-
gers. Several methods for fixing the carrier-phase ambiguity
have been proposed. Here the "fix and hold” method from
[1] will be used to fix the combined variable VAN :=
[VAN;VAN,;...; VAN, ] to integer values.

The initial estimate of the ambiguity vector can be deter-
mined as the difference between carrier-phase and pseudo-

range measurements, i.e. subtraction of (12) from (13):

VAN = %(VA(p —VAp),
where VAQ := [VAQ;VA@;...;VAQ,—1] and VAp =
[VAp1;VAp2;...; VAp,—1] are vectors of combined vari-
ables. The initialization offered by (43) can be used when
new satellites are introduced to the constellation. Initializa-
tion should also be carried out if a satellite is re-introduced
after a period of obstruction or loss-of-lock, as the ambiguity
will have changed.

The initial ambiguity estimates depend strongly on a good
initial position of the rover and base station. As these might
be difficult to obtain prior to flight the ambiguities should
be iterated by the TMO before trying to fix to integer
value, to decrease the risk of fixing to wrong integers. After
initialization the ambiguities will therefore be propagated by
the TMO as real-valued estimates. The estimate can be tested
for convergence to integer values by minimizing, [1]:

(43)

Q= (VAN —VAN)T Py (VAN —VAN), (44)

min
VANegZm—!
where Py € R 1Xm=1 is the covariance matrix of the
ambiguities, and VAN is an integer candidate vector. The
candidate vector belongs to the search space of:

S:={VAN € Z" ' |VAN — c,oy < VAN < VAN +c,0n},

where oy is the variance of the ambiguity estimates deter-
mined by the diagonal elements of Py; oy = \/diag(Py).
The constant ¢, denotes the confidence interval, which in
the following will be considered as; ¢, = 3.29 for 99.9%
confidence interval, assuming normal distribution.

All possible candidate vectors in the search space is
tested to see which minimizes (44). The relation between
the smallest and second smallest value of (44), respectively
called Q; and Qj, is used to determined whether signif-
icant convergence to a candidate vector is achieved. Here
significant is used in a covariance sense, as the search space
depends on the covariance matrix of the ambiguities. The
convergence test consists of verifying that the best solution,
Qy, is sufficiently far from the next best solution:

Q1" > 1, (45)

where #y is a threshold value. If the ratio is larger than the
threshold the test is accepted and the ambiguities are fixed
to the candidate set corresponding to Q. This test can be
carried out at every observer iteration until the ambiguities
are fixed. However, the search space, S, will initially be too
large to computationally feasibly search through all candidate
sets, which encourages the use of methods such as the
LAMBDA method to decrease the search space. The Least-
squares AMbiguity Decorrelation Adjustment (LAMBDA)
method was proposed by [9], [10], [11] and uses a change
in variables to transform the confidence interval of the
ambiguities to cover a smaller area. The transformation is
carried out by use of the decorrelation matrix, Z, see [I,
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Xz =Z3Ry, P, =ZPNZT, (46)
where Xy is a collection of the double-differenced ambiguity
estimates, i.e. iy = VAN. The Cholesky factorization is used
to determine the decorrelation matrix; Py = LDLT, where D
is a diagonal matrix and L is a lower triangular matrix with
unit elements in the diagonal. The decorrelation matrix is
then found as; Z = LL‘I], i.e. the rounded inverse of the
lower triangular matrix.

After the ambiguity transformation the search space has
decreased in size, leaving fewer candidate sets to be tested,
making for a faster evaluation. The LAMBDA method is
often used in connection with other resolution methods such
as the geometry-based approach. Once the ambiguities have
been fixed the transformation can be reversed. A key feature
of this approach is that due to the rounding operation when
determing Z an integer valued xy corresponds to an integer
valued xz, and vice versa. Implementation aspects of the
LAMBDA method are considered in [51] and [52].

There are two alternatives for handling the fixed ambigui-
ties: a) once the ambiguities are fixed to integer values they
are removed from the state vector, decreasing the A, C, K,
Q and P matrices in size, or b) the fixed ambiguities are
introduced as an additional measurement augmenting the R
matrix and the injection terms. The result will be very similar
for the two methods. Method a) might be preferred to b) for
the decrease in computational power.

According to [53] the residual measurement error should
be less than 25% of a wavelength for the integer ambiguity
resolution to have high probability of resolving to the correct
integer. This implies that with high noise levels in the phase
measurements, or uncertainty in the estimated geometric
distance the resolution of the ambiguities might lead to the
wrong integers resulting in a position error. In the event of
loss-of-lock of satellite signals the code measurements can
be smoothed by use of the raw Doppler measurements to
reduce the convergence time.

VII. EXPERIMENTAL RESULTS

Experimental data from a flight with a fixed-wing Penguin
B UAV, see Fig. 4, is used to verify the proposed double-
differenced observer structure. The flight was carried out
at Eggemoen airport in Norway (60°12'52”N, 10°19'07"E).
The UAV was equipped with an ADIS 16488 IMU (with
internal magnetometer) collecting acceleration, rotation rate
and magnetic field data at 410 Hz, while a u-Blox LEA-
6T receiver gathered navigation satellite measurements at
5 Hz coinciding with measurements obtained at a stationary
base station at the airport. The base station receiver is of the
same brand and type as the rover receiver. The base station
additionally logged the ephemeris data required for satellite
position and velocity computation. Throughout the flight the
baseline is kept under 1 km, such that the assumption of
the atmospheric delays experienced by the two receivers are
spatially correlated holds.

Fig. 4: Penguin B used for experimental verification.

The sensors (IMU, GNSS receiver and antenna) used
are considered low-cost and while even cheaper models are
available these are thought to represent the general level of
sensors used for UAV flights. The resolution of the sensors
and the stability characteristics of the inertial sensors are seen
as a limitation on the performance. Better performance can
be expected by including better inertial sensors, especially
increasing the performance of the navigation solution when
GNSS signals are obstructed. Higher grade GNSS receivers
might decrease the experienced measurement noise, supply
higher C/Ny ratios and offer higher sample rates. If the
measurements are not accurately synchronized errors in the
GNSS/INS integration will arise, as investigated in [54].
Here synchronization is achieved with custom printed circuit
boards and a PIC32 micro-controller, for details on the highly
accurate timing platform see [55].

In the following two versions of the presented observer
structure will be investigated where the difference is in the
included aiding measurements; Case A uses pseudorange and
carrier-phase measurements, while Case B additionally uses
the carrier phase derived Doppler measurements. For both
cases the inertial measurements are utilized. The structure of
Case A was introduced and simulated by the authors in [31].

To ascertain the performance of the proposed observer
structure an RTK reference solution is computed using the
open source RTKLIB. No cycle slips were present allowing
the reference to maintain resolved ambiguities throughout the
flight thereby ensuring centimetre level accuracy. The initial
2.3% of the flight has unresolved ambiguities resulting in a
reference with decimetre level accuracy, while the remainder
of the flight has centimetre level accuracy. The RTK solution
is determined from the same GNSS data as is available to
the observer implementations. However, the sampling rate
of the reference solution will be at GNSS receiver sampling
rate while the observer estimates will be at IMU sampling
rate. The observer solution will therefore be down-sampled
when compared.

The tuning parameters for the Q matrix are chosen
as: Q = blockdiag (03 [m?], I3 [m?/s*],0.000251; [m?* /5%,



03 [m?], Ovan), where oyay = 0.01 [A%], while the param-
eters for R are chosen based on the standard deviations of
Table T, oypp = 1.1 [m?], Ovap = 0.03 [m?], and Oyap =
0.06 [m?/s*] increased to accommodate for bounding Gaus-
sian white noise and higher sample rate as discussed in
[1, Section 9.4.2.4]. The pseudorange standard deviation
has been decreased compared to Table I to ensure faster
convergence. Units have been given in square parenthesis
such as not to confuse with variables or constants. The
remaining parameters are: Mj, = 0.0087 [rad?/s?], k; = 0.8,
ko =0.2, k =0.004 and A = 0.1903 [m] corresponding to
the GPS L; wavelength. The ambiguity threshold is chosen
as ty = 3, as suggested by RTKLIB.

The position of the base station is initialized as an average
of the receiver position measurements determined over 25
minutes of logged data. This is considered to be sufficiently
accurate for this application. However, more accurate initial
position estimates will increase the transient performance,
encouraging to average over longer periods when possible.
Precise Point Positioning (PPP) can ensure a decimetre
accurate estimate of the base station, however the drawbacks
are long initialization time and access to preceise ephemeris
and atmospheric data. The initialization process presented in
[46] can be used to initialize the position of the rover and
base station, to ensure that the initial positions are close to
the true position.

In Fig. 5 the sky plot of the constellation throughout the
experiment is shown. The satellite trajectories are marked
with individual colors and the last position has been marked
with the satellite ID indicating the direction. The reference
satellite is chosen to be the SV1 (shown in red) due to
the high initial elevation to minimize atmospheric delays.
A minimum elevation requirement of 15° is enforced for
dismissal of satellites with high propagation errors.

180

Fig. 5: Sky plot showing elevation and azimuth of satellites.
The satellite IDs are included for ease of reference.

The rover GNSS receiver antenna is placed on top of the
UAV between the wings. Due to the high dynamics of the

flight, with sharp turns the rover looses lock on satellites
with low elevation. Only five satellites are considered in the
following test to ensure that the integer ambiguities do not
require frequent resetting. The satellites to be included are
chosen as SV1, SV4, SV11, SV17, SV20, and SV32, which
all have high elevation angles. The dilution of precision
(DOP) will be large due to the clustering of the used
satellites, and higher performance, especially in the vertical
component, might be expected when using a broader satellite
constellation. Here the constellation can be considered akin
to a worst-case scenario with regards to the dilution of
precision.

The trajectory of the UAV includes several fast dynamic
manoeuvres such as figures-of-eights and circles with radius
of approximately 210 m. Some points of interest during the
flight will be marked in the subsequent figures; (1) denotes
take-off, (2) notes when the UAV has reached the desired
altitude beginning a figure-of-eight flight sequence, at (3)
the flight pattern is changed to circles, followed by (@
marking the descent with the reference reverting to lower
accuracy making it unfit for further comparison shortly
prior to landing. These points of interest will be marked in
the following figures for ease of performance comparison
throughout the flight. The take-off, initial trajectory and
landing were performed with manual control, whereas the
figures-of-eight and circles were operated by the autopilot.

The initial part of the trajectory can be seen in Fig. 6
showing the flight path up to (2), while the attitude estimation
is shown in Fig. 7 with the points of interest marked. The
attitude is shown for both cases and is converted from
quaternions to Euler angles describing the rotation from
Body to NED-frame for more intuitive understanding. The
attitude estimation is similar for both cases considered, which
is attributed to the modular observer structure where only the
specific force estimate changes with the case. The point of
Fig. 7 is not to be able to compare the attitude estimation
between the two cases but rather to visualize that there is
little difference between the cases. It should be noted that
the oscillatory behaviour of the pitch estimate between (3)
and @) corresponds well with the observed behaviour during
flight, where a slightly sinusoidal vertical trajectory during
the circular flight pattern was present. This was due to an
uncompensated issue in the autopilot.

The relative position between rover and base station is
determined and compared to the relative position offered by
the reference. The relative position estimation errors for the
proposed observer can be seen in Fig. 8. It is clear that the
integer ambiguities are resolved well in advance of take-off.
The transient period of 35 s is not visible in the figure, due
to the initial offset. However, the transient behaviour can be
seen in Fig. 9. The performance of the position estimates
are compared in Table II, where root-mean-square errors
(RMSE) and standard deviations (STD) are summarised. The
values are determined after the initial transient period of 35 s.
An additional test case is included in Table II where the base
station position has been excluded from the state vector and
is considered constant at the initial position. This test will
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Fig. 7: Rover attitude estimation; Case A (red) and Case B
(blue).

be denoted Case C and will utilize pseudorange and carrier-
phase aiding. The accuracy obtained by Case C is greatly
dependent on the quality of the base station position estimate,
while Case A and B estimate the base station position as part
of the state vector.

The performance of Case A and Case B are very similar
and are not influenced by the dynamics of the flight. Case
B might have advantages in velocity estimation, however,
as no reliable velocity reference is available this cannot be
confirmed. Small drifts are present in the position estimation,
e.g. of approximately 1.7-1073m/s in North direction.

The fast convergence and high accuracy shown in Fig.
8 are attributed to the ambiguity resolution. In Fig. 10 the
ambiguities for Case A are shown for the first 35 s, with
similar results obtained for Case B. The real-valued estimate
is shown in blue, with the RTKLIB reference integers in
black. The rounded estimates are shown in red and only
serve as a visual comparison to the reference integers, as
the resolved integers are not guaranteed to be the same as
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Fig. 8: NED relative position estimation error for Case A
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Fig. 9: Transient behaviour of NED relative position estima-
tion error for Case A (blue) and Case B (red).

the rounded real-valued estimates. The estimated ambiguities
are seen to quickly converge to the reference value, with
one exception for SV17, where the stationary value is one
wavelength off. This is considered acceptable and will still
give high precision as seen in Fig. 8 and Table II.

TABLE II: Performance comparison of relative NED position
estimation error (unit: centimetre).

AIDING RMSE STD

p @ v N E D N E D
Case A: X X 1.005 0.534 1.482 0481 0.343 1.421
Case B: X X X  1.008 0.534 1485 0487 0.344 1423
Case C: X X 1.005 0.533 1.482 0481 0343 1.421

Looking at Table II the RMSE and standard deviations
are seen to be on centimetre-level for all three cases, with
sub-centimetre level STD for the horizontal components.
The vertical components are seen to be less accurate than
the horizontal components for all three cases. This can be
attributed in part to the clustered satellite constellation, and
the general result of less accurate vertical channel offered by
GNSS measurements. Case C has slightly better performance
than Case A. However, as the difference is on sub-millimetre
level Case A and Case C practically offers the same solution.
It is therefore concluded that the inclusion of the base station
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Fig. 10: Example of real-valued ambiguity error of Case
A (blue), rounded ambiguities (red), with reference integer
(black).

position in the state vector does not lead to poorer state
estimates and will be encouraged, especially in case of a
slightly moving base station such as a base station on a ship
during station keeping, or if a precise initial base station
position cannot be obtained. These performance results are
considered good in view of the low-cost sensors used and
the clustered satellite constellation.

A. Float vs. Fixed Ambiguities

In order to ascertain the influence of the ambiguities a
test with only real-valued ambiguities is compared to Case
A. This test will be denoted Case D, and will not differ
in any way from Case A, apart from the carrier-phase
ambiguities being unresolved. In Fig. 11 Case D and Case
A are compared.

For Case D the RMSE value is [1.277;0.942;4.399] m
with standard deviations of [1.212;0.865;1.711] m, which
is approximately two orders of magnitude larger than with
resolved ambiguities. It is clear that for applications with de-
mands of high accuracy the ambiguities need to be resolved,
which is expected.

B. Low Elevation Constellation

A low elevation test is carried out to evaluate the per-
formance when using satellites with low elevation angles.
This can simulate a high latitude flight close to the poles
where the GPS constellation coverage is poor granting only
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Fig. 11: NED relative position estimation for Case A (blue)
and Case D (red).

access to satellites at low elevation. The same data as used
in the test above is utilized, here with an elevation mask
of 5°. The atmospheric disturbances experienced will differ
compared to a high latitude flight, however, this test can give
an impression on the possible performance achievable.

In a high latitude, e.g. Arctic, setting the environment
would be different from the one considered here where
major differences include: a) the terrain in the Arctic will
be completely open sky, whereas here some obstruction
is caused by trees and mountains, b) the ionospheric and
tropospheric conditions, ¢) different number of satellites, and
d) choice of satellites; the best set of satellites based on e.g.
DOP and C/Ny will be selected, whereas here a poor subset
of the satellites is chosen.

Satellites with high elevation are masked out. The satel-
lites; SV4, SV6, SV11, SV14, SV23 and SV31 are used,
where SV11 has been included to satisfy the m > 4 as-
sumption, as the low elevation satellites often are obstructed
jeopardizing the constellation size assumption. The satellite
SV12 is excluded as several cycle slips were detected. The
ambiguities estimates are re-initialized if a satellite is re-
introduced in the constellation.

The proposed observer without carrier phase derived
Doppler aiding (as in Case A above) is tested with the low
elevation constellation, where the performance is shown in
Fig. 12. Instances when m < 5 are marked with vertical grey
lines, e.g. at time 1085 seconds. The test is shortened by a
approximately 45 seconds, compared to the previous tests,
due to extensive loss of low elevation satellites towards the
end of the flight.

It is not possible to resolve the ambiguities reliably due to
frequent loss of satellite lock and re-introduction of the satel-
lites. This has a clear impact on the performance of the po-
sition estimation. The RMSE values are [2.200;6.001;3.961]
with standard deviations [0.367;0.821;1.909], which is sig-
nificantly larger than the values listed in Table II and for the
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Fig. 12: NED relative position estimation error for Case A
using low elevation satellites.

real-valued test in Section VII-A. However, the horizontal
accuracy for the rover is seen to be on meter level. This is
an improvement over standalone solutions where larger devi-
ations would be expected for a low elevation constellation.

VIII. CONCLUDING REMARKS

A tightly-coupled GNSS/INS integration scheme using
a dual GNSS-receiver configuration between a stationary
base station and a moving rover was proposed where the
position and linear velocity of a rover were estimated by
a proposed translational motion observer while attitude was
determined with a recent nonlinear attitude observer. The
proposed translational motion observer utilizes the error of
the double-differenced pseudorange, carrier phase and carrier
phase derived Doppler satellite measurements between the
receivers in the injection terms.

The observer was verified using flight data from an UAV
equipped with low-cost sensors, where position estimates
were shown to be within 2-4 centimetres of the RTK ref-
erence solution throughout a 20 minutes long flight. Con-
vergence of the ambiguities introduced by the carrier-phase
measurements was achieved by inclusion in the state vector
where they were initially considered real valued later to be
resolved to integer values.

APPENDIX

A. Proof: TMO Injection Terms

The double-differenced injection terms are expressed as:
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with ¥, := ||p¢ — p¢||2, where * is a placeholder for i or

j. Similar expressions can be found for H! and Vs« by
substitution of r with s. The higher order terms can be
bounded, as shown in [46]:
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with V., and 2 being the lower bounds on the geometric
distance between receiver and ith satellite, and [[v¢ —v¢||2 <
V.
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