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Abstract— 1t is proposed to estimate wind velocity,
Angle-Of-Attack (AOA) and Sideslip Angle (SSA) of
a fixed-wing Unmanned Aerial Vehicle (UAV) using
only kinematic relationships with a Kalman Filter (KF),
avoiding the need to know aerodynamic models or other
aircraft parameters. Assuming that measurements of
airspeed and attitude of an UAV are available as inputs,
a linear 4th order time-varying model of the UAV’s
longitudinal speed and the 3-D wind velocity is used
to design a Kalman-filter driven by a GNSS velocity
measurement airspeed sensor. An observability analysis
shows that the states can be estimated along with an
airspeed sensor calibration factor provided that the
flight maneuvers are persistently exciting, i.e. the aircraft
changes attitude. The theoretical analysis of the KF
shows that global exponential stability of the estimation
error is achieved under these conditions. The method is
tested using experimental data from three different UAVs,
using their legacy autopilot to provide basic estimates
of UAV velocity and attitude. The results show that
convergent estimates are achieved with typical flight
patterns indicating that excitation resulting from the en-
vironment and normal flight operation is sufficient. Wind
velocity estimates correlate well with observed winds at
the ground. The validation of AOA and SSA estimates
is preliminary, but indicate some degree of correlation
between the AOA estimate and vertical accelerometer
measurements, as would be expected since lift force can
be modeled as a linear function of AOA in normal flight.

I. INTRODUCTION

A fixed-wing aircraft’s Angle-Of-Attack (AOA)
and Side-Slip Angle (SSA) are important variables
that contain useful information about the perfor-
mance and safety of the aircraft in both normal and
abnormal conditions. Larger aircrafts are usually
equipped with vanes or multi-port air data probes
that, when properly calibrated, can be used to infer
the wind velocity, AOA and SSA. Small UAVs,
on the other hand, does usually not have sensors
dedicated to measurement of these variables due to
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their relatively large weight, size, cost and power
consumption. In this paper we study conditions un-
der which the AOA and SSA can be estimated us-
ing standard sensors without employing a model of
the UAV dynamics (i.e. using only exact kinematic
relationships). The standard sensor suite contains
GNSS (Global Navigation Satellite System), IMU
(Inertial Measurement Unit), and pitot-static tube.

A model-free approach is highly desirable since
the estimates of AOA and SSA can then be used
to directly detect faults and changes related to
structural damage, icing, [1], and other adverse
condition that might influence the aerodynamic co-
efficients or the UAV. It may also enable accurate
control of small UAVs in agile maneuvers (e.g.
[2]) with high AOA or SSA where aerodynamic
models may be quite inaccurate since data from
computational fluid dynamics or wind-tunnel tests
may not be available for small low-cost UAVs,
and calibration for payload weight distribution and
other changes that may occur when the UAV is
customized or modified between missions may be
impractical or cumbersome. Finally, a model-free
approach simplifies configuration since the method
will be independent of the aircraft.

A commonly proposed estimation approach is
the use of an Extended Kalman-Filter (EKF) based
on the nonlinear kinematics and measurement
model, possibly also in combination with an aero-
dynamic model, see [3], [4], [S], [6]. The method
in [5] uses a similar sensor suite with GPS, IMU
and pitot-static pressure sensor for wind velocity
estimation, from which AOA and SSA can be
derived without using an aerodynamic model. It
estimates wind speed, its horizontal direction, and
the airspeed sensor correction factor. Since the
measurement model is nonlinear, an EKF is used
for estimation. The method was used for airspeed
sensor fault diagnosis in [7].

In [8], they propose a method which uses
GPS/IMU sensors, but avoids the use of a pitot-



static pressure sensor due the use of a dynamic
model of the aircraft. The method in [9] estimates
wind velocity using only GPS/IMU sensors, but
relies on circular maneuvers in the horizontal plane
or a helical flight pattern. [10] proposes a modular
architecture using GPS/IMU to calculate ground
velocity, however uses an aerodynamic model to
get an accurate estimation of AOA and SSA. Kine-
matic vehicle models together with GPS/INS and
airspeed sensors are used in [11]. A wind velocity
model is generated by differentiating the “wind-
triangle” equations and used in a least-squares es-
timator. This requires that airspeed measurements
are differentiated by taking differences between
discrete samples. An EKF is proposed for estima-
tion of wind velocities, SSA and AOA in [12].
The method applies a sensor suite with GPS/INS
and pitot-static tube together with kinematic and
dynamic models having known aerodynamic co-
efficients. Wind velocity estimation can also be
made by measuring the relative motion of the UAV
relative to the ground using a camera, [13].

The main contribution of the present paper is
a model-free approach that does not include any
aircraft-specific parameters, and at the same time
can estimate the mean wind velocity in three di-
mensions, and the pitot-static tube correction factor
in order to provide automatic online calibration
and fault diagnosis of the airspeed sensor. Two
types of airspeed sensors are considered: Pitot-
static tubes that are fixed to the longitudinal axis
of the UAV, and pitot-static tubes that are self-
aligning with the air velocity vector. The dynamic
observer model is a linear time-varying model
that avoids linearization about the estimated state
trajectory commonly employed when using an
EKF as in [5]. As a consequence, it is shown
that Global Exponential Stability (GES) of the
estimator error dynamics can be achieved under
an explicit persistence of excitation condition that
requires maneuvers which change the aircraft at-
titude. Experimental results with three different
UAVs having different autopilots and performing
different maneuvers are included to illustrate that
the method is independent of the aircraft, since
exactly the same estimator parameters are used in
all cases. Moreover, the experimental data illustrate
how different maneuvers contribute to fulfillment
of the persistence of excitation condition.

I1. KINEMATICS

Let ¥, denote the velocity vector of the aircraft
relative to Earth, where the arrow means that it is
a coordinate-free vector. Let v} = (u,v,w)” con-
tain its components decomposed in the aircraft’s
BODY coordinate frame, and v} = (ug, vy, wy)"
contain its components decomposed in an Earth-
fixed North-East-Down (NED) coordinate frame.
The aircraft kinematics are now, [3]

U—7rv+qw = ag (D)
V—pw+Tru = ay 2)
W—qu—pv = a, (3)

where the components of the UAV’s acceleration
vector @ are decomposed in the BODY frame as
a’ = (az,a,,a,)", and p,q,r are angular rates.
Let the velocity vector of wind relative to Earth
be ¥, and V" = (Uy,Vy,w,)! denote its de-
composition in the NED frame. The velocity of
the aircraft relative to the wind velocity is then
U, = Uy — U,. The rotation matrix from NED to
BODY is denoted Rfl and is defined by the roll (¢),
pitch (¢) and yaw (/) angles. Hence, the relative

velocity v, decomposed in the BODY frame as
b p—

vl = (U, vy, wy) 7, s, [3]
Uy U Uy
Uy = v — Rfl UV 4

W, w Wy

The sideslip angle  and the angle-of-attack « are
the angles between the BODY-fixed axes of the
aircraft and its relative velocity vector v, [3]:

a = tan'(w,/u,) ®)
B = sin'(v,/V,) (6)

and V, = y/u2 + v? + w? is the airspeed.
ITI. SENSORS

Assume the following relatively standard sensor
suite (e.g. [14]):

o GNSS providing measurements of velocity.

o AHRS (Attitude and Heading Reference Sys-
tem) providing measurements of roll, pitch
and yaw. This is usually realized using
an IMU providing measurements of specific
force and angular velocity. In addition, GNSS
velocity or magnetometer measurements may
be used to give information about the heading.



« Pitot-static tube with differential pressure sen-
sor providing measurement of wu, when it is
fixed aligned with the longitudinal axis of the
UAV, or V, it it is self-aligning (which is not
common on small UAV’s).

IV. ESTIMATOR STRUCTURE
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Fig. 1. Estimator structure.

The proposed estimator structure is illustrated in
Figure 1. Since it is a cascade, its stability prop-
erties are inherited from the individual modules,
[15]. It has the following modules

o AHRS estimating the attitude (roll, pitch and
yaw angles ¢,6,1) based on (1)-(3). This
could be based on the EKF, e.g. [3] or non-
linear observers with semi-global or global
regions of attraction, e.g. [3], [14], [16], [17],
[18].

o The “wind velocity observer” estimates the
wind velocity based on (4), see section V
where it is considered in detail, such that
aircraft relative velocity can be input to the
computation of AOA and SSA.

o The “AOA and SSA computation” module
applies (5) and (6).

V. WIND VELOCITY OBSERVER

The estimation of wind velocity is non-trivial,
since we need to make additional assumptions on
the wind dynamics and UAV motion. We assume
the wind is steady (slowly time-varying) relative
to Earth

o = 0 (7)
This model will be used in a KF where the
estimates will be predicted using this model (no

change), and updated using measurements. This
means that time-varying wind velocities can still
be accurately estimated despite this assumption,
since the gain of the KF effectively defines a filter
cut-off frequency. Wind velocity frequencies that
are slower than this cut-off frequency are estimated
by the KF, while faster frequency components are
filtered away from the estimate. Hence the KF gain
should be optimally selected having both this and
the sensors’ noise levels in mind.

A. Longitudinal air speed sensor

— m m 3
Suppose u, = yu,;", wkere u;" is the measure-

ment given by the airspeed sensor and +y is an un-
known sensor scaling factor that will be estimated
as an online calibration or fault diagnosis of the
sensor. Hence, we use the following measurement
equation for design of the observer injection term

w = di Rbu™ 4 u™y (8)

where d; = (1,0,0)” and we assume u to be a
measured output signal derived from the GNSS
velocity and AHRS. We use the model

¥ =0 €))

for the airspeed sensor scaling factor, assuming
it is slowly time-varying. Defining the state x =
((v)T,9)T € R, eq. (9) together with (7) and (8)
leads to the system matrix A = 0 and the time-
varying measurement matrix

C = (AR, uy)

T

(10)

such that (8) can be written © = C'z. The observ-
ability Grammian is therefore

Wo(t()atl) =
/“ (Ry)" DR, u(Ry)Tdy |
] di Ryuy" (uy)?
where
1 00
D = dlle = 0 0O
0 0O

First we note that for a fixed-wing UAV, we gener-
ally have u]”" # 0. Due to rank(D) = 1, we depend
on time-variations in the matrix R’ to achieve
observability of the wind velocity, i.e. the UAV
needs to make maneuvers with changes in attitude
in order to satisfy a persistence of excitation (PE)



condition that is sufficient for uniform complete
observability, [19], where there must exista 7" > 0
and € > 0 such that for all ¢ > 0 we have

Wo(t,t+T) > ely (11)

This is a quite intuitive condition, considering that
the pitot-static tube measures the component of the
wind velocity projected on its longitudinal axis that
is usually aligned with the longitudinal axis of the
UAV. In order to gather the information necessary
to find all component of the wind velocity vector,
it must probe in different directions. Flight at
constant attitude gives rank(WW,) = 2 while some
variations in pitch and yaw leads to rank(W,) = 4.
Consider the observer

(%) -
,3/

with gain vector K = (ky, ky, kuw, k)T € R*. The
error I = (v — 0l';y — ) satisfies the Linear
Time-Varying (LTV) dynamics

T = KCi

K (u—uy—di RboL) (12)

nvw

(13)

A time-varying gain matrix K can be designed
using A = 0 and the given C' with the time-varying
Kalman-Bucy filter, [19]:

K=PCT"R™, P=Q-PCTR'CP (14)

where R > 0 is the variance of the sensor noise
on u, () > 0 is the covariance of a white noise
model of the wind velocity and scaling factor rates
of change, and the initial condition is P(0) >
0, where both are symmetric matrices. We note
that with the PE condition satisfied, this leads to
bounded P and renders the observer GES, [20].

B. Self-adjusting air speed sensor

Suppose instead that V, is measured by a self-
adjusting airspeed sensor as V, = 4V = |[v?]|,
with an unknown scaling factor . Hence, we have
the measurement equation

b

v

vz = Ru" + 0P = Rbo™ + V“m||v7’;||7
T

and we can define the estimated measurement

(15)

o = RMOL+ V] diA (16)
and time-varying
C = (R, V,"d) (17)

Using algebraic manipulation we get

b_ b RO™ 4+ AV dy + Vid

Ug = Vg =

(18)

with d = v%/||[v%|| — d; may be non-zero only due
to non-zero AOA and SSA. Hence, we can design
the observer

( Uév ) = Kb — RYOL + VI )y (19)

and get the error dynamics

T = KCi+e (20)

where e = K'V,d is easily seen to be bounded. We
also have A = 0 and use the same equations for
the KF as before, but with the C-matrix (17) and
appropriate covariance matrices. The origin of the
nominal error dynamics z is GES when e = 0 and
a PE condition is satisfied, and the error converges
to a ball centered at the origin when e # 0. We
note that the PE condition is derived as above, and
only slightly different with small AOA and SSA
since d ~ 0.

VI. AERODYNAMIC FORCES

The specific force measurements in the BODY
coordinate frame are directly given by the IMU’s
accelerometers [3]:

fr = ag+ gsin(0) 2D
fy = a, — gsin(¢) cos(d) (22)
f. = a,— gcos(¢)cos() (23)

where g is the gravity constant. The specific force
vector in the BODY frame equals to the sum of
the aerodynamic forces on the UAV, [3]:

1

fa: = E(Fax_‘_FT) (24)
1

fy - EFay (25)

fo= ~F. 26)
m

where (Fiz, Foy, w.)? are aerodynamic forces
represented as a vector decomposed in the BODY
frame, m is mass, and F7 is the magnitude of the
propulsion force that is assumed to be aligned with
the longitudinal BODY axis.

The aerodynamic force models are relationships
between «, 3,V, and the propeller angular speed
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Fig. 2. The UAV’s used for testing. From top: Penguin B, Sierra  Fig. 3.  Flight path. Penguin B UAV, using Piccolo SL sensors
and X8. telemetry log.

wp, on one side, and the aerodynamic forces are
given by, [3]: 25

1 2 —_ Wine =)
Fo. = -0V2SCx(a 27 W WP
. x(e) en R \
Fay = 5@‘/:12503/(5) (28) :2/ ] r \'\.\ AUA\I \
= v
1 g / N
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VII. EXPERIMENTAL TEST RESULTS

All tests uses off-the-shelf autopilots with an
AHRS and GPS to provide velocity and attitude
estimates as input to the estimation algorithm (12),
which is implemented as a discrete-time Kalman-
filter with R =1 and

P(0) =

Q =
Exactly the same tuning parameters are used for
all tests involving the three different UAVs shown

in Figure 2. Initial conditions at t = 0 are 4(0) = 1
and 07, = (0,0,0).

diag(1072,1072,107%,107%)
diag(107*,107%,107%,107%)

A. NTNU Penguin, Eggemoen, 4 Nov 2014

The Penguin B UAV (GTOW about 20 kg)
with Piccolo SL autopilot was used. The flight



duration is about 20 minutes with takeoff, circles
and figure-8-loops at about 500 ft altitude above
ground, before landing. Due to some issues the
pitch oscillates with a 10 second period during the
level flight period, leading to variations in altitude
up to 20 meters. Airspeed varies slightly around
30 m/s. The data are logged by the autopilot over
the radio telemetry link at 1 second intervals.

Figures 3-5 show the test results. At Eggemoen
the winds are estimated to about 2 m/s, which
is consistent with weather observations and data
from http://yr.no at the time. There is a scale
factor error of about 8 % on the air speed sensor,
which is quickly identified by the estimator already
during the climb after takeoff.

The observability Gramian (with 7" equal to the
full length of the data set, and scaled) is given by

2634 902 —-1.6 807.0
W — 90.2 264.1 0.268 892.4
° | —1.6 0.268 3.6 285.9

807.0 892.4 285.9 393-10°

We note that the estimate of the z-component of v,
is more uncertain than the x, y-components, which
is expected since there are larger variations in yaw
than pitch.

Consider the UAV’s body z-axis and egs. (26),
(29) and (32). For small AOA they lead to the
following approximation

fz:

for some parameters ky and k; that depend on
airspeed, the rotational velocity ¢, and elevator
control action, cf. p. 49 in [3]. Notice that a non-
zero kg typically results from an offset between
the UAV’s longitudinal body axis and the airfoil’s
chord line. In order to validate the estimates of
AOA, we can investigate if they are consistent
with (29). The upper part of Figure 6 shows the
estimated AOA («) plotted versus the specific force
f. measured by the IMU. We see that there is a
linear correlation between f, and « as expected.
We note that the slope is negative due to the
positive z-axis pointing downwards.

A linear correlation can be expected also for
small SSA, cf. p. 50 in [3]

fy:

for some parameters ~ and 1, where kg depends
on airspeed, aileron and rudder control forces, and

]{70 + k:loz (33)

Ko + /<J1ﬂ (34)

angular velocities p and r. The data in the bottom
part of Figure 6 is, however, not able to clearly
identify a significant correlation.

For reference, the same variables are estimates
using a different set of sensors installed on the
UAV during the same flights. This sensor suite con-
sists of a uBlox LEA-6T GPS receiver producing
both pseudo-range and carrier-phase measurements
at 5 Hz that were processed using RTKLIB and
data from a local base station in order to gen-
erate high quality Real-Time Kinematics (RTK)
measurements. It also consists of an ADIS IMU
operating at 410 Hz, that was used to produce inte-
grated GPS/INS estimates of attitude and velocity
using a nonlinear observer, [16]. Air speed data
with a sampling frequency of 1 Hz from Piccolo
was used. Digital low-pass filtering at 410 Hz sam-
pling frequency was applied to reduce the effects
of high-frequency vibrations from the combustion
engine. The estimates appears to have slightly
stronger correlations for AOA and significantly
better correlations for SSA than the ones achieved
by the Piccolo sensor suite, as illustrated in Figure
7 that shows the estimated values.

Careful study of the data have suggested that
the remaining errors are likely due to the depen-
dence on airspeed, angular velocities and control
actions, as well as smaller errors and phase de-
lays in attitude estimates, inaccuracies in time-
synchronization of the measurements due to la-
tencies in the GPS velocity measurements, and
undetected high-frequency wind-induced motions.

B. NASA Sierra, Svalbard, 18 Jul 2009 about
10:30

The NASA Sierra UAV (GTOW about 200 kg)
with Piccolo autopilot was used. The test data set
contains about 100 minutes of flight, with a take-
off, some figure-8-loops before the UAV follows
three straight legs of its mission path. The first
part is at 1000 ft altitude above mean sea level,
while the last part is at 600 ft altitude. Data are
logged over Iridium telemetry at typically 3 second
intervals, with frequent data dropouts.

Estimates and experimental data are shown
in Figures 8-11. The winds are estimated to
be about 10 m/s, which is consistent with the
autopilot’s own estimates. Weather data from
http://yr.no reports winds of 8 m/s at 11:00
to 10.5 m/s at 14:00 at the ground.
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We note the initial dip in the estimate of ~.
This seems to be due to some latency or filtering
in the GPS receiver or autopilot as the estimate
responds more slowly than the airspeed sensor
during the takeoff. Due to heavy cross track winds,
the SSA is estimated to vary between -5 and +5
deg during most of the flight. AOA is estimated to
approximately 5 deg during steady flight.

C. NTNU X8 UAV, 15 May 2014, Hopavdgen
about 13:30

A Skywalker X8 flying-wing UAV (GTOW
about 4 kg) with APM 2.5 autopilot was used.
The flight lasts about 20 minutes with a take-off,
loitering over a target, and then landing. The UAV
was operated manually with RC (remote control)
in order to manage highly unsteady winds and
turbulence that were caused by operating close
to mountains in a coastal environment. Data were
logged at irregular intervals (typically 5 times per
second) by the Mission Planner through telemetry
data received over a wireless network link.

Test flight data and results are given in Figures
12-14. The airspeed sensor scaling factor was
estimated to approximately 1.7, indicating that it
was highly uncalibrated.

VIII. DISCUSSION AND CONCLUSION

It is studied how to estimate wind velocity,
AOA and SSA using only kinematic relationships,
avoiding the need to know aerodynamic models
or other aircraft parameters. The paper investigates
conditions under which these variables are possible
to estimate. Assuming slowly varying winds, and
a sensor suite consisting of GNSS, IMU and a
pitot-static tube as a minimum configuration, it is
shown that these variables can be estimated along
with an airspeed sensor calibration factor, provided
the aircraft changes pitch and yaw. The theoretical
analysis shows global exponential stability of the
estimation error dynamics.

The method is tested using experimental data
from three different UAVs, using their off-the-shelf
autopilot to provide estimates of UAV velocity
and attitude. The flight conditions contain low and
high winds, steady and turbulent winds, climbs,
descents, straight paths, small course changes, and
loops. The results show that convergent estimates
are achieved with all these typical flight patterns
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indicating that excitation resulting from the envi-
ronment and flight operation is sufficient. The esti-
mated AOA and SSA are to some extent correlated
with the expected values under the prevailing flight
conditions, although we cannot conclude about the
accuracy of the estimates due to the lack of a direct
measurement of the true values for validation. The
results are therefore considered as preliminary,
and future work will focus on validation of the
accuracy of the method in various conditions.
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